

Quick Guide

VLT® Lift Drive LD 302

Version 3.1

Contefnts

1	Introd	duction	. 5
	1.1	Qualified Personnel	. 5
	1.2	Additional Resources	. 5
	1.3	Symbols used in this document	. 5
2	Safety	y	. 6
	2.1	High voltage	. 6
	2.2	Unintended start	. 6
	2.3	Discharge time	. 6
	2.4	Derating	. 6
	2.5	Mechanical Holding Brake	. 6
	2.6	Crane, Lifts and Hoists	. 7
	2.7	Motor-generated Over-voltage	. 7
	2.8	Back-EMF from PM motor operation	. 7
	2.9	Safe Stop	. 7
3	Instal	lation	. 7
	3.1	Ingress protection	. 8
	3.2	Frequency Converter and motor pre-installation check list	. 8
	3.3	Mechanical Installation Cooling	. 8
	3.4	Lifting	. 8
	3.5	Mounting	. 8
	3.6	Tightening Torques	. 9
	3.7	Electrical Installation	. 9
	3.8	Earth (Grounding)	10
	3.9	Motor connection	11
	3.10	Back-EMF from PM motor	12
	3.11	Brake Resistor	12
	3.12	Environment	12
	3.13	Schematic drawing, examples	13
	3.14	Encoder connection	16
	3.15	Examples	17
4	Progra	amming	19
	4.1	Local Control Panel	19
	4.2	Back Up and Copying Parameter Settings	22
	4.3	Main Menu	23
	4.4	Parameter overview	24
5	Comn	nissioning	27
	5.1	Motor and Encoder rotation direction	
	5.2	Guideline for simple and fast setup	28
	5.3	Commissioning using Quick Menu	29
	5.4	Setup motor data for PM motor	32

	5.5	Setup Brake Resistor Data	32
	5.6	Setup incremental encoder data	32
	5.7	Setup Mechanical data	33
	5.8	Predefined Comfort Settings	33
	5.9	Setup control source	33
	5.10	Setup control type	33
	5.11	Setup special functions	34
	5.12	Setup in- and outputs	34
6	Functi	onal descriptions	35
	6.1	Automatic motor adaptation, AMA	35
	6.2	Mechanical Brake Control	37
	6.3	Control of the mechanical brake with SBU 2.0	38
	6.4	Speeds, Acceleration, Jerks	43
	6.5	Deceleration distance	45
	6.6	Speed PID controller	45
	6.7	Control sources P19-66	46
	6.8	Position mode	49
	6.9	Operation with absolute encoder (SSI/EnDat/BISS-C)	50
	6.10	Operation with UPS, Evacuation mode	51
	6.11	Operation VVC+ open loop for induction motors	52
	6.12	Extended Settings	52
	6.13	Use of terminals T27 and X57.1	55
	6.14	Monitoring functionalities	57
	6.15	Standby function	61
	6.16	Test run mode	62
	6.17	Direction Change Counter	63
	6.18	Alarm log	65
	6.19	Reset of errors with locking	65
	6.20	Short circuit function:	66
7	Opera	tion	67
	7.1	Startup	67
	7.2	Test	67
	7.3	Start-error or Track-error or accelerates unexpected or does not move	68
	7.4	Noise or vibrations during acceleration or deceleration (low frequency)	68
	7.5	Optimization	69
8	Troub	leshooting	71
9	Apper	ndix	72
	9.1	Wiring Examples with Parameter setup	72
	9.2	Start and Ston Sequences	88

	9.3	Drive Motor Database	89
	9.4	Messages	92
	9.5	Warnings and Alarms	92
10	EMC o	complaint installation	103
11	Evacı	ation	105

1 Introduction

This manual is a guideline for using Danfoss frequency converter series, Lift Drive LD 302, Automation Drive FC 302 regarding design, installation, wiring and parameterization. Fundamental knowledge about elevators and frequency converters are essential. Fundamental knowledge is not a part of the manual. For elevators and the use of frequency converter, the national and local regulations and safety requirements must be complied. Regarding handling and use of frequency converters it is recommended additional to read and understand the available literature for Automation Drive FC 300 and Lift Drive LD 302 to be able to work with the system safely and professionally, particularly observe the hints and cautionary remarks.

1.1 Qualified Personnel

Only qualified personnel should carry out Installation, commissioning and maintenance of the frequency converter. Qualified personnel are trained personnel who are authorized to fit, install, commission, ground and label equipment, systems, and circuits in accordance with the standards for safety technology and who are familiar with the safety concepts of automation engineering. Additionally, the personnel must be familiar with all the instructions and safety measures described in supplemental publications and manuals are available from Danfoss. They must have suitable safety equipment and be trained in first aid.

1.2 Additional Resources

Other resources are available to understand advanced frequency converter functions and programming.

Supplemental publications and manuals are available from Danfoss:

Operating Instructions VLT® Automation Drive

Design Guide, VLT® Automation Drive

Programming Guide VLT® Automation Drive

Operating Instructions VLT® Lift Drive LD 302

See for listings:

http://www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/VLT+Technical +Documentation.htm

1.3 Symbols used in this document

The following symbols are used in this manual.

▲WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

CAUTION

Indicates a situation that may result in equipment or property-damage-only accidents.

NODE

Indicates highlighted information that should be regarded with attention to avoid mistakes or operate equipment at less than optimal performance.

2 Safety

▲WARNING

2.1 High voltage

Frequency converters are connected to hazardous mains voltages. Extreme care should be taken to protect against shock. Only trained personnel familiar with electronic equipment should install, start, or maintain this equipment.

2.2 Unintended start

When the frequency converter is connected to the AC mains, the motor may be started by means of an external switch, a serial bus command, an input reference signal, or a cleared fault condition. Use appropriate cautions to guard against an unintended start.

2.3 Discharge time

Frequency converters contain DC-link capacitors that can remain charged even when the frequency converter is not powered. To avoid electrical hazards, disconnect AC mains, any permanent magnet type motors, and any remote DC link power supplies, including battery backups, UPS and DC-link connections to other frequency converters. Wait for the capacitors to fully discharge before performing any service or repair work. The amount of wait time is listed in the *Discharge Time* table. Failure to wait the specified time after power has been removed before doing service or repair could result in death or serious injury.

Discharge Time					
Power range [kW]	Minimum waiting time [min]				
0,37-7,5	4				
11-90	15				
High voltage may be present even when the warning LED indicator lights are off.					

2.4 Derating

Frequency converters in lift applications are subjected to higher stresses due to high switching frequencies. As a result, special instructions apply to operation. Deviations from the specified environmental conditions (chapter mechanical installation) can result in a different lifetime or the output power is reduced due to oversizing. This also applies to operation with very low output frequencies (fnom <20 Hz). A derating for the Frequency converter is necessary. Please contact Danfoss or your technical advisor.

2.5 Mechanical Holding Brake

A mechanical holding brake mounted directly on the motor shaft normally performs static braking. In some applications, the static holding torque is working as static holding of the motor shaft (usually synchronous permanent motors). A holding brake is either controlled by a PLC or directly by a digital output from the frequency converter (relay or solid state).

NOTE

When the holding brake is included in a safety chain:

The frequency converter cannot provide a safe control of a mechanical brake.

A redundancy circuitry for the brake control must be included in the total installation.

2.6 Crane, Lifts and Hoists

The controlling of external brakes must always have a redundant system. The frequency converter can in no circumstances be the primary safety circuit. Comply with relevant standards. It is recommended to disable protection mode in hoisting applications.

2.7 Motor-generated Over-voltage

The voltage in the intermediate circuit is increased when the motor acts as a generator.

2.8 Back-EMF from PM motor operation

If coasted at high rpm the PM motor back-EMF may potentially exceed the maximum voltage tolerance of the frequency converter and cause damage. If it is possible that the motor may overspeed then it is recommended to equip a brake resistor.

2.9 Safe Stop

After installation and before first operation, perform a commissioning test of an installation or application, using Safe Stop. Perform the test again after each modification of the installation or application involving the Safe Stop.

NOTE

A passed commissioning test is mandatory after first installation and after each change to the safety installation. The Safe Stop function can be used for asynchronous, synchronous and permanent magnet motors. Two faults can occur in the power semiconductor of the frequency converter. When using synchronous or permanent magnet motors a residual rotation can result from the faults. The rotation can be calculated to Angle = 360/(Number of Poles). The application using synchronous or permanent magnet motors must take this residual rotation into consideration and ensure that it does not pose a safety risk. This situation is not relevant for asynchronous motors.

3 Installation

Installation Site Check List

- The frequency converter relies on the ambient air for cooling. Observe the limitations on ambient air temperature for optimal operation.
- Ensure that the installation location has sufficient support strength to mount the frequency converter.
- Keep the manual, drawings, and diagrams accessible for detailed installation and operation instructions. It is important that the manual is available for equipment operators.
- Locate equipment as near to the motor as possible. Keep motor cables as short as possible.
- Check the motor characteristics for actual tolerances.
- Ensure that the ingress protection rating of the frequency converter is suitable for the installation environment. IP55 (NEMA 12) or IP66 (NEMA 4) enclosures may be necessary.

3.1 Ingress protection

IP54, IP55 and IP66 ratings can only be guaranteed if the unit is properly closed.

- Ensure that all cable glands and unused holes for glands are properly sealed
- Ensure that the unit cover is properly closed.

ACAUTION

Device damage through contamination. Do not leave the frequency converter uncovered. For "spark-free" installations according to European Agreement concerning International Carriage of Dangerous Goods by Inland Waterways (ADN_2011 ###), refer to VLT® Automation Drive FC 300 Design Guide.

3.2 Frequency Converter and motor pre-installation check list

- Compare the model number of unit on the nameplate to what was ordered to verify the proper equipment.
- Ensure each of the following are rated for same voltage: Mains (power), Frequency converter and Motor
- Ensure that the frequency converter output current rating is equal to or greater than motor full load current for peak motor performance. Motor size and frequency converter power must match for proper overload protection. If frequency converter rating is less than motor, full motor output cannot be achieved.

3.3 Mechanical Installation Cooling

- To provide cooling airflow, mount the unit to a solid flat surface or to the optional back plate.
- Top and bottom clearance for air cooling must be provided. Generally, 100-225 mm (4-10 in) is required.
 - See specification for clearance requirements.
- Improper mounting can result in overheating and reduced performance.
- Derating for temperatures starting between 40 °C (104 °F) and 50 °C (122 °F) and elevation 1000 m (3300 ft) above sea level must be considered. See the equipment Design Guide for detailed information.

3.4 Lifting

- Check the weight of the unit to determine a safe lifting method.
- Ensure that the lifting device is suitable for the task.
- If necessary, plan for a hoist, crane, or forklift with the appropriate rating to move the unit.
- For lifting, use hoist rings on the unit, when provided.

3.5 Mounting

- Mount the unit vertically.
- The frequency converter allows side by side Installation.
- Ensure that the strength of the mounting location will support the unit weight.
- Mount the unit to a solid flat surface or to the optional back plate to provide cooling airflow.
- Improper mounting can result in overheating and reduced performance.
- Use the slotted mounting holes on the unit for wall mounting, when provided.

Illustration: Proper Mounting with Back Plate

Item A is a back plate properly installed for required airflow to cool the unit.

NOTE

Back plate is needed when mounted on railings.

3.6 Tightening Torques

Connection Tightening Torques for proper tightening must be complied with specification.

3.7 Electrical Installation

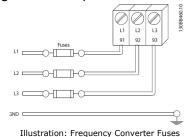
Requirements

▲WARNING

EQUIPMENT HAZARD!

Rotating shafts and electrical equipment can be hazardous. All electrical work must conform to national and local electrical codes. It is strongly recommended that installation, start up, and maintenance be performed only by trained and qualified personnel. Failure to follow these guidelines could result in death or serious injury.

CAUTION


Wiring isolation

Lay input power, motor wiring and control wiring in three separate metallic conduits or use separated shielded cable for high frequency noise isolation. Failure to isolate power, motor and control wiring could result in less than optimum frequency converter and associated equipment performance.

- For your safety, comply with the following requirements. Electronic controls equipment is connected to hazardous mains voltage. Extreme care should be taken to protect against electrical hazards when applying power to the unit.
- Run motor cables from multiple frequency converters separately. Induced voltage from output motor cables run together can charge equipment capacitors even with the equipment turned off and locked out. Overload and Equipment Protection.
- An electronically activated function within the frequency converter provides overload protection for the motor. The overload calculates the level of increase to activate timing for the trip (controller output stop) function. The higher the current draw, the quicker the trip response. The overload provides Class 20 motor protection. See *Warnings and Alarms* for details on the trip function.
- Because the motor wiring carries high frequency current, it is important that wiring for mains, motor power, and control are run separately. Use metallic conduit or separated shielded wire. Failure to isolate power, motor, and control wiring could result in less than optimum equipment performance.
- All frequency converters must be provided with short-circuit and over-current protection. Input fusing is required to provide this protection, see *Illustration*. If not factory supplied, fuses must be provided by the installer as part of installation.

Refer the maximum fuse ratings in Fuse Specifications.

Wire Type and Ratings

- All wiring must comply with local and national regulations regarding cross-section and ambient
 - temperature requirements.
- Danfoss recommends that all power connections be made with a minimum 75 °C rated copper wire.
- Refer the *Power-dependent Specifications* for recommended wire sizes.

3.8 Earth (Grounding)

Requirements

▲WARNING

GROUNDING HAZARD!

For operator safety, it is important to ground the frequency converter properly in accordance with national and local electrical codes as well as instructions contained within these instructions. Ground currents are higher than 3,5 mA. Failure to ground the frequency converter properly could result in death or serious injury.

NOTE

It is the responsibility of the user or certified electrical installer to ensure correct grounding (earthing) of the equipment in accordance with national and local electrical codes and standards.

- Follow all local and national electrical codes to ground electrical equipment properly.
- Proper protective grounding for equipment with ground currents higher than 3,5 mA must be established, see *Leakage Current* (>3,5 mA).
- A dedicated ground wire is required for input power, motor power and control wiring.
- Use the clamps provided with on the equipment for proper ground connections.
- Do not ground one frequency converter to another in a "daisy chain" fashion.
- Keep the ground wire connections as short as possible.
- Use of high-strand wire to reduce electrical noise is recommended.
- Follow motor manufacturer wiring requirements.

Leakage Current

Follow national and local codes regarding protective earthing of equipment with a leakage current > 3.5 mA. Frequency converter technology implies high frequency switching at high power. This will generate a leakage current in the earth connection. A fault current in the frequency converter at the output power terminals might contain a DC component which can charge the filter capacitors and cause a transient earth current. The earth leakage current depends on various system configurations including RFI filtering, screened motor cables, and frequency converter power. EN/IEC61800-5-1 (Power Drive System Product Standard) requires special care if the leakage current exceeds 3.5 mA. Earth grounding must be reinforced in one of the following ways:

- Earth ground wire of at least 10 mm².
- Two separate earth ground wires both complying with the dimensioning rules. See EN 60364-5-54 § 543.7 for further information.

Using RCDs

Where residual current devices (RCDs), also known as earth leakage circuit breakers (ELCBs), are used, comply with the following:

Use RCDs of type B only which are capable of detecting AC and DC currents.

Use RCDs with an inrush delay to prevent faults due to transient earth currents.

Dimension RCDs according to the system configuration and environmental considerations.

Grounding Using Shielded Cable

Earthing (grounding) clamps are provided for motor wiring.

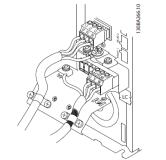


Illustration: Grounding with Shielded Cable

3.9 Motor connection

▲WARNING

INDUCED VOLTAGE!

Run output motor cables from multiple frequency converters separately. Induced voltage from output motor cables run together can charge equipment capacitors even with the equipment turned off and locked out. Failure to run output motor cables separately could result in death or serious injury.

- For maximum wire sizes see Power-dependent specification.
- Comply with local and national electrical codes for cable sizes.
- Motor wiring knockouts or access panels are provided at the base of IP21 and higher (NEMA1/12) units.
- Do not install power factor correction capacitors between the frequency converter and the motor.
- Connect the 3-phase motor wiring to terminals 96 (U), 97 (V), and 98 (W).
- Ground the cable in accordance with grounding instructions provided.
- Torque terminals in accordance with the information provided.
- Follow motor manufacturer wiring requirements.

The following *Illustration* represents mains input, motor, and earth grounding for basic frequency converters. Actual configurations vary with unit types and optional equipment.

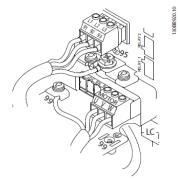


Illustration: Example of Motor, Mains and Earth Wiring

3.10 Back-EMF from PM motor

▲WARNING

PM motors produce voltage when the rotor shaft is turned. The generated voltage is fed back into the connected frequency converter. When the voltage level is high enough, the motor can generate enough energy to power up the frequency converter, even when it is disconnected from mains. To avoid PM motor produced voltage when the rotor shaft is turned and for maintenance work on frequency converter and PM motor it is recommended to take care the following safety precautions.

- Disconnect PM motor from frequency converter.
- Short circuit of the motor winding.
- Block motor shaft against movement.

▲WARNING

Frequency Converter powered on, at Disconnected Mains if PM motor shaft turns.

3.11 Brake Resistor

▲WARNING

The user is responsible for the compliance of the specification for installation and operation of a braking resistor on the drive. The manufacturer's specifications must be mandatory to comply. In elevator applications, the use of devices with braking electronics and braking resistors is generally necessary. Using a braking resistor ensures that the energy is absorbed in the braking resistor and not in the frequency converter. For detailed information on the use, selection, installation, wiring, and cabling of braking resistors, refer to the braking resistor manufacturer's documentation. The drive can monitor the braking resistor based on the measured power and issue an overload warning. It is necessary to set the brake resistor data in parameter 2-11, 2-12 and the parameter 2-13 for enabling the monitor function.

▲WARNING

Monitoring braking power is not a safety function. A thermal switch may be required for this. The braking resistor circuit is not protected against earth leakage current. Do not touch the braking resistor as it can get very hot during or after braking. To avoid a fire hazard, you must place the braking resistor in a safe environment. All cables connected to the braking resistor must be able to withstand the increased thermal stress.

The braking electronics in the frequency converter can fail due to a defect and the braking resistor can be permanently energized in this case. In the event of an error, the power supply to the frequency converter must be interrupted. Corresponding information can be called up via a digital output on the frequency converter (see parameter 19-84=4 and Parameter 19-81 Warnings and Alarms). Monitoring braking power is not a safety function. A thermal switch is required for this. The braking resistor circuit is not protected against earth leakage current. Do not touch the braking resistor as it can get very hot during or after braking. To avoid a fire hazard, you must place the braking resistor in a safe environment.

3.12 Environment

Equipment containing electrical components may not be disposed of together with domestic waste. It must be separately collected with electrical and electronic waste according to local and currently valid legislation.

3.13 Schematic drawing, examples

Schematic Lift Drive LD302

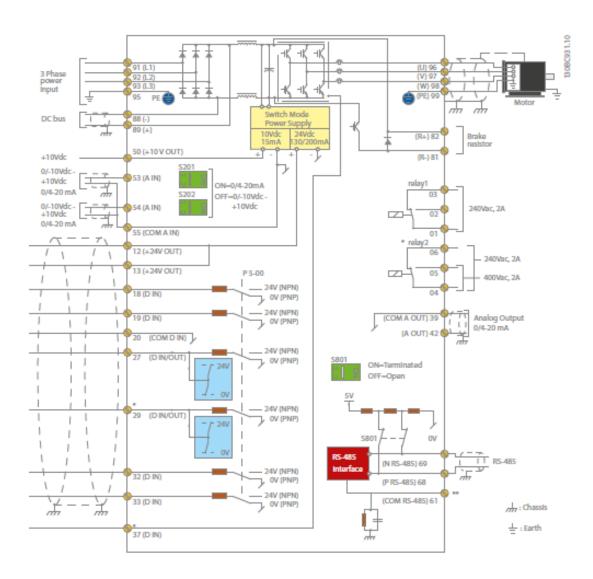
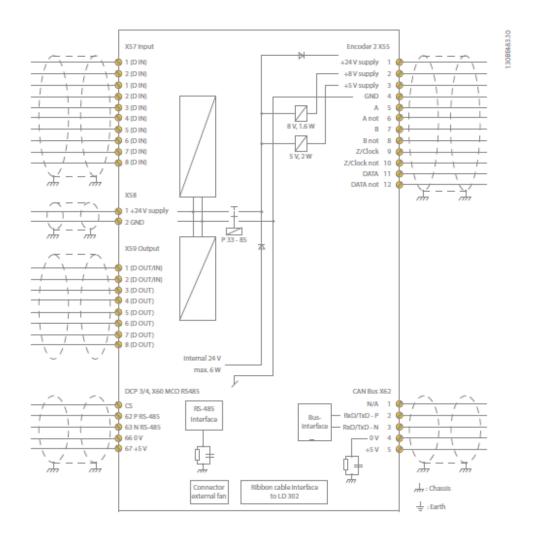
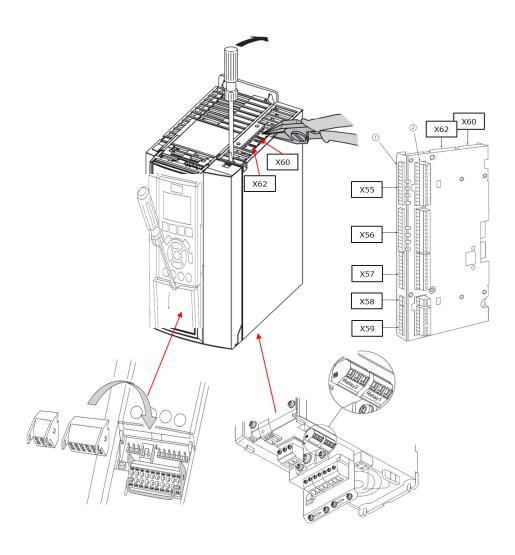



Diagram showing all electrical terminals without options. A = analog, D = digital

For instructions on Safe Stop installation please refer to the section Safe Stop Installation in the VLT®AutomationDrive FC 302 Design Guide.

Schematic Lift Controller MCO 361


The numbers represent the terminals on the drive. VLT Lift Drive standard interfaces:

- RS485
- USB
- DCP 3/4
- CanOpen DSP 417

3.13.1 Location Terminals

USB socket connector and the terminal strips for the control terminals 18 - 69 are located below the front cover of the LCP. The terminal strips X55, X56, X57, X58 and X59 are located on the right behind the front cover. The front covers can e.g. be removed with a screwdriver. The terminal strips X60 and X62 are on the top right of the housing. The connections X60 and X62 are exposed by breaking out the provided windows. The connectors for supply, motor, braking resistor and for the relays are located on the bottom of the housing.

Item	Description	Item	Description
1	Terminal blocks, on the top	X58	24 V/DC supply
2	Terminal blocks, on the side	X59	Digital outputs
X55	Encoder Terminal	X60	
X56	Not used	X62	Can Terminal
X57	Digital Inputs		

3.14 Encoder connection

Terminal X55

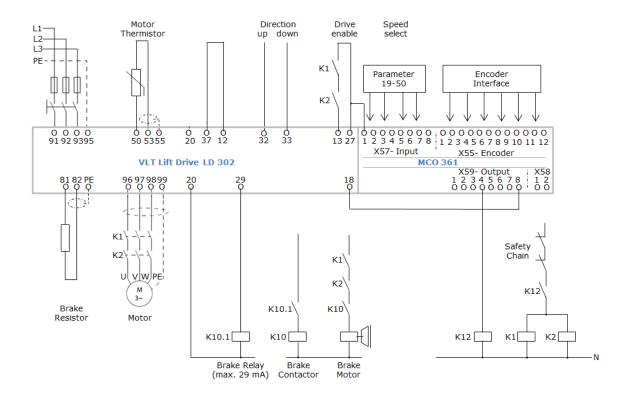
Encoder- Terminal X55 (Umax 30V)												
Terminal- Number	1	2	3	4	5	6	7	8	9	10	11	12
Description	24 VDC	8VDC	5 VDC	GND	Α	/A	В	/B	Clock	/Clock	Data	/Data
TTL- Encoder	se	e Data S	heet	GND	Α	/A	В	/B	-	-	-	-
HTL- Encoder	HTL- Encoder see Data Sheet		GND	Α	/A	В	/B	-	-	-	-	
SIN/COS	see Data Sheet		GND	Α	/A	В	/B	-	-	-	-	
SIN/COS + Absolute	see Data Sheet		GND	Α	/A	В	/B	Clock	/Clock	Data	/Data	
Example												
ECN 1313 (Endat) with 5 V main supply	-	-	V+ and Sensor +	GND and Sensor-	А	/A	В	/B	Clock	/Clock	Data	/Data
SinCos with SSI	Cos with SSI see Data Sheet		GND	Α	/A	В	/B	Clock	/Clock	Data	/Data	
SinCos with BISS	see Data Sheet		GND	Α	/A	В	/B	Clock	/Clock	Data	/Data	

Encoder Option MCB 102

Encoder- Option MCB 102												
Terminal- No. X31/	1	2	3	4	5	6	7	8	9	10	11	12
Description 24 VDC 8VDC 5 VDC		GND	Α	/A	В	/B	Z	/Z	D	/D		
TTL- Encoder	see Data Sheet		GND	Α	/A	В	/B	-	-	-	-	
SIN/COS	see Data Sheet		GND	Α	/A	В	/B	-	-	-	-	
SIN/COS + Absolute	see Data Sheet		GND	Α	/A	В	/B	Clock	/Clock	Data	/Data	
Absolute only see Data Sheet		GND	-	-	-	-	Clock	/Clock	Data	/Data		
Example			•	•		•		•	•		•	•
Endat 2.2	see	Data Sh	eet	GND	-	-	-	-	Clock	/Clock	Data	/Data

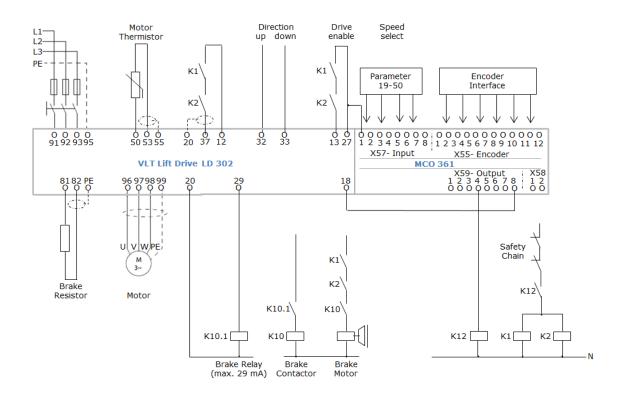
Resolver- Option MCB 103

Resolver- Option MCB 103												
Terminal- No. X32/	1	2	3	4	5	6	7	8	9	10	11	12
Description	REF+	REF-	COS+	cos-	SIN+	SIN-	A+	A-	B+	В-	Z+	Z-
Resolver	R1	R2	S1	S3	S2	S4	-	-	-	-	-	-


3.14.1 Encoder mirroring

The encoder information from terminal X55 can be mirrored to output X56. The output can be activated with parameter 19-61. The input is used as a divider as follows.

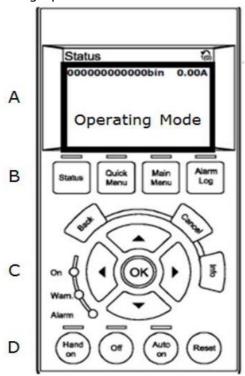
Nr.	Name	Parameter description
19-61	Encoder mirroring	Output Encoder Signals
		[0] No Output
		[1] Output 1:1
		[2] Output 2:1
		[3] Output 4:1
		[4] Output 8:1
		[5] Output 16:1
		[6] Output 32:1
		[7] Output 64:1
		[8] Output 128:1
		[9] Output 256:1
		[10] Output 512:1
		[11] Output 1024:1
		[12] Output 2048:1
		[13] Output 4096:1
		[14] Output 8192:1


3.15 Examples

Operation with Motor Contactors K1 and K2

3.15.1 Operation without Motor Contactors

4 Programming


4.1 Local Control Panel

The local control panel (LCP) is the combined display and keypad on the front of the unit and has several user functions.

- Start, stop, and control speed in local control
- Display operational data, status, warnings and cautions
- Programming frequency converter functions
- Manually Reset the frequency converter after a fault

LCP Layout, functional groups

The graphical LCP is divided into four functional groups A, B, C and D

Display area A:

Display area B: Menu keys for changing the display to display status options, programming, or error message history.

Display area C: Navigation keys for programming functions, moving the display cursor, and speed control in local operation. Also included are the status indicator lights.

Display area D: Operation mode keys and reset.

Display functional group A

After power-up the frequency converter, the LCP displays "Operation Mode". The LCP displays the input status terminal X.57 (0 bin=0 V/DC, 1 bin=24 V/DC) and the actual motor current in Ampere.

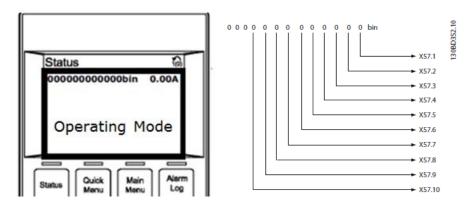
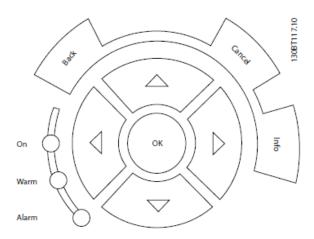


Illustration: LCP Display, Input Status Terminal X.57, and Motor Current

Display functional group B, LCP Menu keys

Menu keys are used for menu access and parameter set-up, toggling through status display modes during normal operation, and viewing fault log data.

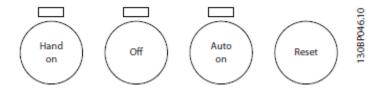

LCP- Key	Function
Status	Press to display operational information.
	Displays the Lift application status message.
	Displays the status of the digital input signals of X57.
	The symbol in the upper right corner of the LCP display shows the motor rotation
	direction and the active set-up.
Quick	Allows access to programming parameters for initial set-up instructions and
Menu	many detailed application instructions.
	Select "Q1 My Personal Menu" to set-up the Lift application parameters.
Main	Allows access to all programming parameters.
Menu	Press twice to access top-level index.
	Press once to return to the last location accessed.
	Press and hold to enter a parameter number for direct access to a parameter.
Alarm Log	Displays a list of current warnings, the last 5 alarms, and the maintenance log.
	For details select the alarm number using the navigation keys and press [OK].

<u>Danfoss</u>

Quick Guide VLT Lift Drive LD302

Display functional group C, Navigation Keys

Navigation keys are used for programming functions and moving the display cursor. The navigation keys also provide speed control in local (hand) operation. Three frequency converter status indicator lights for On, Warning and Alarm are also located in this area.


LCP- Key	Function
Back	Reverts to the previous step or list in the menu structure.
Cancel	Cancels the last change or command as long as the display mode
	has not changed.
Info	Press for a definition of the function being displayed.
Navigation Keys	Use the four navigation keys to move between items in the menu.
OK	Use to access parameter groups or to enable an option.

Indicator lamp	Indicator	Function
Green	ON	The ON indicator lamp activates when the frequency converter receives power from mains voltage, a DC bus terminal, or a 24 V external supply.
Yellow	WARN	In case of warning conditions, the yellow WARN indicator lamp becomes on and a text appears in the display area to identify the reason.
Red	ALARM	A fault condition causes the red alarm indicator lamp to flash and an alarm text is displayed.

Display functional group D, Operation Keys

Operation keys are located at the bottom of the LCP.

Key	Function
Hand On	Starts the frequency converter in local control.
	Use the navigation keys to control the frequency converter speed.
	An external stop signal by control input or serial communication overrides
	the local hand on.
Off	Stops the motor but does not remove power to the frequency converter.
Auto On	Puts the system in remote operational mode.
	Responds to an external start command by control terminals or serial
	communication. Speed reference is from an external source.
Reset	Resets the frequency converter manually after a fault has been cleared.

4.2 Back Up and Copying Parameter Settings

Programming data is stored internally in the frequency converter.

Data can be uploaded into the LCP memory as a storage back-up

Once stored in the LCP, the data can be downloaded back into the frequency converter. Data can also be downloaded into other frequency converters by connecting the LCP into those units and downloading the stored settings. (This procedure is a quick way to program multiple units with the same settings.)

Initialization of the frequency converter to restore factory default settings does not change stored data in the LCP memory.

!! Back up and copy only possible if P19-88 = 0, fast-boot function is not active.

Restoring Default Settings

Initialization restores the unit to factory default settings. All made parameter settings changed from factory settings, e.g. motor data, and monitoring records, will be lost. Uploading data to the LCP provides a backup before initialization.

Restoring the frequency converter parameter settings back to default values is done by initialization of the frequency converter.

Manual Initialization

- 1. Disconnect power to the Lift Drive and wait for the display to turn off.
- 2. On LCP, Press and hold the LCP buttons, [Status]+ [Main Menu] + [OK] at the same time and apply power to the unit.
- 3. Release the LCP keys after 5 s.

Factory default parameter settings are restored during start-up. After powering-up the Lift Drive wait until the Lift application is loaded, and continue parameter setup, after the LCP displays "Operation Mode".

4.3 Main Menu

In the Main Menu, the Parameters are organized in various parameter groups. The graphical local control panel (LCP) displays the parameter groups after pressing the "Main Menu" Button on the LCP. For easy selection of correct setup and optimized operation for the complete Lift application, the Lift Drive LD302 contains within the Main Menu additional the Parameter group 19-**. Parameter group 19-** contains all necessary Parameter to setup the complete Lift application.

Within the Parameter group 19-** it is possible to setup parameter for:

- electrical Lift Components. E.g. Lift Motor, Encoder, mechanical Brake.
- mechanical Lift components. E.g. Ratio, Suspension, Traction.
- requirement concerning Lift dynamic and comfort. E.g. Lift speed, motion profile.

4.3.1 Parameter groups overview

The following table contains all the Main Menu Parameter groups.

Outside of the 19-** Parameter group are only limited Parameter groups and Parameter are available to setup additional or special functions which are not supported within the Parameter group 19-**. The different colors indicate the parameter groups for possible access outside the 19-** Parameter group.

Parameter setup for Lift application
Read only
Optional parameters
Do not touch!

No.	Parameter groups	Parameter group			
	Menu name	Description			
0-**	Operation/Display	Setup LCP display, operation and handling.			
1-**	Load and Motor	Setup Motor data, Motor Thermal Protection.			
2-**	Brakes	Please do not change settings here!			
3-**	Reference/Ramps	Please do not change settings here!			
4-**	Limits/Warnings	Please do not change settings here!			
5-**	Digital In/Out	Please do not change settings here!			
6-**	Analog In/Out	Please do not change settings here!			
7-**	Controllers	Please do not change settings here!			
8-**	Comm. and Options	Please do not change settings here!			
13-**	Smart Logic	Please do not change settings here!			
14-**	Special Functions	Setup special Functions e.g. switching Frequency, EMV-			
		Filter, reset Function, Fan control, Mains Failure.			
15-**	Drive Information	Read only, Drive information e.g. Drive Type, Software			
		Version, operation hours.			
16-**	Data Readouts	Read only, Drive status information, parameter for			
		troubleshooting.			
18-**	Data Readouts 2	Read only, display parameter for troubleshooting.			
19-**	Application	Lift Application Parameter settings for the complete			
	Parameter	Lift setup. E.g. setup for, Lift Motor with or without			
		Encoder, mechanical Ratio, Suspension, Traction,			
		Brake control, Floor level, Lift speed			
30-**	Special Features	Please do not change settings here!			
32-**	MCO Basic Settings	Setup Encoder, PID Controller			
33-**	MCO Adv. Settings	Setup MCO- Terminal X60, CAN node, DCP3 / DCP4			
34-**	MCO Data Readouts	MCO Display parameters for troubleshooting			

4.4 Parameter overview

Motor Construction						
ID	Parameter Name	Factory setting	Unit			
1-10	Motor Construction	[1] PM, non salient SPM				

ASM- Mo	ASM- Motor Data							
ID	Parameter Name	Factory setting	Unit					
1-20	Motor Power [kW]	depends on drive	kW					
1-22	Motor Voltage	depends on drive	V					
1-23	Motor Frequency	depends on drive	Hz					
1-24	Motor Current	depends on drive	Α					
1-25	Motor Nominal Speed	depends on drive	Rpm					
19-02	Motor cos phi	69						

PM- Moto	PM- Motor Data						
ID	Parameter Name	Factory setting	Unit				
1-24	Motor Current	depends on drive	Α				
1-25	Motor Nominal Speed	depends on drive	Rpm				
1-26	Motor Cont. Rated Torque	depends on drive	Nm				
1-30	Stator Resistance (Rs)	depends on drive	Ohm				
1-37	d-axis Inductance (Ld)	depends on drive	mH				
1-39	Motor Poles	depends on drive					
1-40	Back EMF at 1000 Rpm	depends on drive	V				

19-* Lift	19-* Lift Application Parameter						
ID	Parameter Name	Factory setting ASM / PM- Motor	Unit				
19-01	Motor number	0					
19-02	Cos Phi	69					
19-03	Encoder Autotun	0					
19-04	Car direction	0					
19-05	Encoder direction	1					
19-06	Encoder monitor	1					
19-07	Encoder resol	2/3					
19-08	Abs. encoder type	0					
19-09	Abs. encoder offs	0					
19-10	Traction sheave	650/320	mm				
19-11	Ratio	36.85/1.0					
19-12	Suspension	1/2					
19-13	Brake lift delay	300/0	ms				
19-14	Brake delay	600	ms				
19-15	Brake close delay	600	ms				
19-16	Max. Torque	0.00	%				
19-17	Source start torque	0					
19-19	Run in Dist.	60.0	mm				
19-20	Max. speed	1.000	m/s				
19-21	V4, Nominal speed	1.000	m/s				
19-22	V0, Leveling speed	0.100	m/s				
19-23	Vi, Inspection speed	0.300	m/s				
19-24	V3, Intermediate speed 1	0.800	m/s				
19-25	V2, Intermediate speed 2	0.300	m/s				
19-26	Vn, Releveling speed	0.010	m/s				

	<u> </u>		
19-27	Floor level dist	5.0	mm
19-28	V1, Intermediate speed 3	0.200	m/s
19-30	Acceleration	0.700	m/s²
19-31	Deceleration	1.000	m/s²
19-32	Start Jerk	0.600	m/s³
19-33	Accel. Jerk	0.600	m/s³
19-34	Decel. Jerk	1.000	m/s³
19-35	Run in Jerk	0.400	m/s³
19-38	Comfort	0	
19-40	KP - gain at start	100/50	
19-41	KP - gain at operat.	100/50	
19-42	I time at start	200.0/12.0	ms
19-43	I time operation	200.0	ms
19-44	Filtertime start	10.0/1.0	ms
19-45	Filtertime opera	10.0	ms
19-46	Pos. gain start	0.0000/0.1000	
19-47	Pos. error start	100	mm
19-48	Pos. error max	1000	mm
19-50	Run - in mode	0	
19-52	evac. limit VVC+	3.52	A
19-53	Control V1	0.800	m/s
19-54	Control V2	0.300	m/s
19-55	L - start acc	0.020	m/s ²
19-56	L- start speed	0.050	m/s
19-57	L-start time	200	ms
19-58	Delay after Stop	100	ms
19-59	Torque down time	200	ms
19-60	Test - run mode	0	1113
19-61	Encoder mirroring X55 - X56	0	
19-62	Open Loop	0	
19-63	Motor adaptation	0	
19-64	Store param.	0	
19-65	Monitoring functions	0	
19-66	Dig_Serial	0	
19-67	Function Relay 1		
19-68	Time Delay Coast	5	mc
19-69		<u></u>	ms
19-09	Sync Position Monitor Drive + Motor	Internal use only	Do not uso
19-70	Setup counter	0	Do not use
19-71	DCP4 corr. factor	1.000	
19-72	DCP CMD		
19-73	DCP STAT	<u> </u>	
19-74		0	
	Error behaviour	<u>U</u>	
19-80	Log No	0	
19-81	Error code		h
19-82	Error time	0	h
19-83	Function Error log	0	
19-84	Function X59.1-7	0	
19-85	User Par 1985	0	
19-86	Special Functions	0	
19-87	Brake monitor delay	2.000	S
19-88	Fast Boot Mode	0	
19-89	User Par 1989	0	

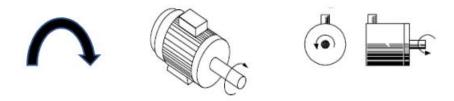
19-90	SW- Version	Version No.	
19-92	Status	Status No.	
19-93	Dir change cnt 1	-1	
19-94	Dir change cnt 2	0	
19-96	User Par 1996	1000	
19-97	Brake slip	0.08	
19-98	Abs enc position	0	
19-99	Distance during dec.	0	mm

Additiona	Additional Parameters						
ID	Parameter Name	Factory setting	Unit				
1-53	Model Shift frequency	depends on drive	Hz				
4-16	Torque limit Motor Mode	depends on drive	%				
4-17	Torque Limit Generator Mode	depends on drive	%				
4-18	Current Limit	depends on drive	%				
14-01	Switching frequency	depends on drive	kHz				
14-50	RFI Filter	[1] On					
32-00	Incremental Signal Type	[1] RS-422 (5V TTL)					
32-01	Incremental Resolution	1024					
32-60	Proportional factor	30					

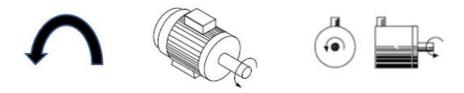
16-* Data Readouts						
	Parameter Name	Factory setting	Unit			
16-1* Mo	tor Status					
16-10	Power [kW]	0	kW			
16-12	Motor Voltage	0 V				
16-13	Frequency	0	Hz			
16-14	Motor Current	0	Α			
16-16	Torque [Nm]	0	Nm			
16-17	Speed [RPM]	0	RPM			
16-18	Motor Thermal	0	%			
16-3* Dri	ive Status					
16-30	DC Link Voltage	0	V			
16-34	Heatsink Temp.	0	°C			
16-35	Inverter Thermal	0	%			
16-39	Control Card Temp. [°C]	0	°C			
16-* Inpu	uts and Outputs					
16-60	Digital Input*	000000000	bin			
16-62	Analog Input 53	0.000				
16-64	Analog Input 54	0.000				
16-66	Digital Output [bin]	0000	bin			
16-71	Relay Output [bin]	000000000	bin			
34-40	Digital Input [bin]	00000000000	bin			
Process D	Pata					
34-50	Actual Position	0	1mm/100			
34-56	Track Error	0	1mm/100			
34-59	Actual Velocity	0	1mm/100s			

^{*} Getting the status of the input terminals of the control card:

P16-60 [bin]	0	0	0	0	0	0	0	0	0	0
Input terminal	-	-	-	37	18	19	27	29	32	33


5 Commissioning

5.1 Motor and Encoder rotation direction


It is necessary to check the rotation direction for motor and encoder. For the Lift- application applies:

- Upward drive, motor rotates clockwise with positive reference.
- Downward drive, motor rotates counter- clockwise with negative reference.
- Upward drive, encoder counts up
- Downward drive, encoder counts down

View rotation clockwise:

View rotation counter- clockwise:

Note:

If the motor direction of rotation does not match, the direction of rotation must be changed with:

Swapping two motor- phases

The counter direction of the encoder is displayed in Parameter 16-06 Actual Position.

- o The value in Parameter 16-06 increases when the motor rotates clockwise.
- The value in Parameter 16-06 decreases when the motor rotates counterclockwise.

If the encoder counter direction does not match to the direction of the motor, the counting direction of the encoder must be changed with:

Swapping two encoder tracks

5.2 Guideline for simple and fast setup

Recommended steps for the initial commissioning:

- 1. Wiring according to the examples in chapter 9.1 to adapt the drive to your control system.
- 2. Setting up language
- 3. Setup of motor data

P1-20 motor power

P1-24 motor current

P1-25 motor speed

P1-26 motor torque

P1-39 motor poles

4. Calculation of eventual missing data on PM Motors:

Number of motor poles.

If the number of motor poles is not given by the nameplate, the value can be calculated by using the nominal frequency and nominal speed in rpm of the motor with the following formula.

$$p = \frac{2*fnom[Hz]*60}{nnom[rpm]}$$

Nominal motor torque.

The nominal torque can be calculated if missing by using the nominal power of the motor and the nominal speed with the following formula.

$$\mathsf{Mnom} = \frac{Pnom[W]*9,55}{nnom[rpm]}$$

5. Setup of mechanical data:

P19-10 Traction sheave diameter

P19-12 No of suspensions

P19-20 Maximum Speed (usually the same as nominal speed)

P19-21 Nominal speed

6. Setup of control source and adaptation (Examples):

P19-50 Run- in mode

P19-66 Dig Serial (Power cycle the drive, in case of any change)

P19-86 Special functions

7. Motor adaptation and first operation:

After all settings are made, P19-63 (Motor adaptation) shall be set to 1. A start command e.g. revision mode shall be applied. The drive will perform now at standstill the motor adaptation. As soon this is finished, the drive will turn off the inverter by itself. As next step the Lift should be driven in revision mode to the lower half of the shaft.

- 8. Testrun (Inspection speed), check of basic operation and directions (chapter 6.1.1)
- 9. Activation of required monitoring functions
- 10. Optimization (chapter 6.2)
- 11. Wiring Examples with Parameter setup

5.3 Commissioning using Quick Menu

For simple and fast setup of the Lift application, the Lift Drive LD 302 offers an additional Quick Menu for parameter setup, step by step. All relevant parameter to get the Elevator up and running are listed in the quick menu. For later optimization further settings can be found in group 19-* in the main menu. For commissioning the Lift Drive LD 302, we strongly recommend the Quick Menu!

Overview Quick Menu Parameter

Quick Menu- Parameter		
	Motor- Type	
General Settings	ASM	PM
0-01, Language		
19-01, Motor number		
1-10, Motor Construction		
	1-20, Motor Power [KW]	1-20, Motor Power [KW]
	1-22, Motor Voltage [V]	1-22, Motor Voltage [V]
	1-23, Motor Frequency [Hz]	1-23, Motor Frequency [Hz]
	1-24, Motor Current [A]	1-24, Motor Current [A]
	1-25, Motor Speed [rpm]	1-25, Motor Speed [rpm]
		1-26 Motor Torque [Nm]
		1-39 Motor poles
	19-02 Motor Cos Phi	
19-10, Traction sheave [mm]		
19-11, Gear Ratio		
19-12, Suspension		
19-20, Vmax, maxSpeed [m/s]		
19-21, V4, nominal Speed [m/s]		
19-77		
19-66, Digital Serial (Control)		
19-50, Run-in mode		
19-86, Special Function		
19-67, Function Relay 1		
19-63, Motor adaptation (AMA)		
19-03, Encoder Autotuning		
19-05, Encoder direction		
19-04, Car direction		

Quick Menu

At the graphical local control panel (LCP), Press [QUICK MENU] and choose [Q1]- My Personal Menu and [OK].

Within the Quick Menu, [Q1]- My Personal Menu, start with the first Parameter, 0-01 Language and continue step by step the following parameter.

Setting Language

No.	Name	Parameter Description
0-01	Language	Select the Language
		[0] English
		[1] German
		[X]

Setup motor data

Motor data can be entered on two different ways.

- 1. Motor numbers (See appendix "Drive Motor Database") contains motor construction-, electrical and encoder data. After entering a motor number, all relevant parameters will be set and optimized for the given motor. Not further information regarding the motor and encoder are required.
- 2. Setting up the motor by name plate information. After setting the data, an automatic motor adaptation (AMA) will optimize the control of the motor.

Setup motor data by motor number

No.	Name	Parameter Description
19-01	Motor number	Select the ASM or PM motor type stored in LD 302 motor type database (see Apendix "Drive Motor Database"). By selecting a certain motor type, all required motor data are set automatically within the LD 302. See Lift manual appendix, Drive Motor Database, motor-table for motor type and associated motor number. 1. Enter motor type number. 2. Save the selected motor type. 3. Press [OK] and [Cancel] to save the settings. If selecting [0], enter the following parameter for ASM or PM motors.

Update Quick Menu

To update the Quick Menu, press on the graphical local control panel (LCP) again the LCP button **[Quick Menu]**. After press **[Q1]**- My Personal Menu and then continue the commissioning with the next parameter.

The update procedure of the Quick Menu is necessary to refresh the Quick Menu with the right parameters depends on Motor number, Motor type and motor construction.

Setup the motor by name plate information

Setup Motor Construction

No.	Name	Parameter Description
1-10	Motor Construction	[0] Asynchronous
		[1] PM,non salient PM

Update Quick Menu

To update the Quick Menu, press on the graphical local control panel (LCP) again the LCP button **[Quick Menu]**. After press **[Q1]**- My Personal Menu and then continue the commissioning with the next parameter. The update procedure of the Quick Menu is necessary to refresh the Quick Menu with the right parameters depends on Motor, Motor type and motor construction.

Depends on the used motor type, continue the motor data setup with the following parameter setup description for asynchronous motor or PM motor.

Setup motor data for asynchronous motor

After selecting the Motor construction "asynchronous" and update the Quick Menu, continue within the Quick Menu, [Q1]- My Personal Menu, to setup the following motor parameters for the asynchronous motor.

No.	Name	Parameter Description Enter the nominal motor data according to the motor nameplate.
1-20	Motor Power [KW]	Enter the nominal motor power
1-22	Motor Voltage [V]	Enter the nominal motor voltage
1-23	Motor Frequency [Hz]	Enter the nominal motor frequency
1-24	Motor Current [A]	Enter the nominal motor current
1-25	Motor Speed [rpm]	Enter the nominal motor speed
19-02	Motor cos phi	Set the motor cos phi value, multiplied by 100. The input of the cos phi value causes automatically a new calculation of the advanced motor data, 1-30 Stator Resistance (Rs) to 1-35 Main Reactance (Xh).

Operation in the field weakening area for asynchronous motor

Older motors, which were designed for operation directly on the mains, should be operated above their nominal speed when operated on the frequency converter.

The ratio of frequency and voltage can no longer be kept constant by the frequency converter after a certain point (field weakening point). From this point, the motor torque decreases quadratically with the increased frequency. That the frequency converter can also optimally control the motor in this area, the advanced motor data in P 1-30 – P 1-35 and the motor cos phi P14-43 must be correct. The Automatic motor adaptation should be carried out to determine the equivalent circuit diagram data. See Automatic Motor Adaptation, P19-63. Furthermore, a voltage reserve for operation in field weakening can be entered in the P 1-54. 10 to 30 V are recommended here.

Danfoss

Quick Guide VLT Lift Drive LD302

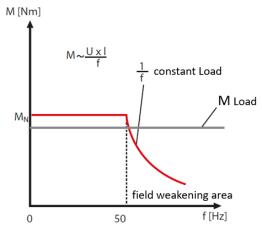


Figure: M/f behavior of asynchronous motor

5.4 Setup motor data for PM motor

After selecting the Motor construction "PM Motor" and Update the Quick Menu, continue within the Quick Menu, [Q1]- My Personal Menu, to setup the following motor parameters for the Lift PM motor.

No	Name	Parameter Description Enter the nominal motor data according to the motor nameplate.
1-20	Motor Power [KW]	Enter the nominal motor power
1-24	Motor Current [A]	Enter the nominal motor current
1-25	Motor Speed [Rpm]	Enter the nominal motor speed
1-26	Motor Torque [Nm]	Enter the nominal motor Torque
1-39	Motor Poles	Enter the number of motor poles.

5.5 Setup Brake Resistor Data

For the connected brake resistor, it is necessary to enter the correct value for the resistance (Ohm) and power. In addition, it is necessary to activate the braking function and the monitoring function.

Nr.	Name	Parameter Setup
2-10	Brake Function	[1] Brake Resistor
2-11	Brake Resistor (Ohm)	XXX, Resistor value in Ohm
2-13	Brake Power Limit (kW)	XXX, Power value in kW
2-14	Brake Power Monitoring	[10] Warning 300ms

5.6 Setup incremental encoder data

For Lift application with motor feedback, it is necessary to setup the encoder data.

No.	Name	Parameter Description
32-00	Incremental Signal Type	[0] None (for induction motors open loop) [1] RS-422 (5V TTL) [2] Sinusoidal 1Vpp
32-01	Incremental Resolution	Pulses per revolution

5.7 Setup Mechanical data

No.	Name	Parameter Description
19-10	Traction sheave [mm]	Enter the value for Diameter of traction sheave or enter [-1] to calculate the value. The calculation is based on parameter value settings for P1-25 motor nominal speed, P19-11 ratio, P19-12 suspension and P19-21 nominal cabin speed.
19-11	Gear Ratio	Enter the value of the Gear ratio or enter [-1] to calculate the value. The calculation is based on parameter value settings for P1-25 motor nominal speed, P19-10 traction sheave, P19-12 suspension and P19-21 nominal cabin speed.
19-12	Suspension	Number of suspensions
19-20	V max	Maximum (nominal speed)
19-21	V4	Nominal speed

5.8 Predefined Comfort Settings

To get a quick setting of acceleration and jerks it is possible to use different reselection's of comfort.

No.	Name	Parameter Description
19-38	Comfort	[0] no preselection active
		[1] gentle
		[2] dynamic
		[3] normal

5.9 Setup control source

No.	Name	Parameter Description
19-66	Dig_Serial	[0] Drive control by digital terminals
		[1] Serial bus control DCP3
		[2] serial bus control DCP4
		[3] CanOpen DSP417
		Power cycle drive after change of control type

5.10 Setup control type

No.	Name	Parameter Description
19-50	Run-in mode	Set mode due to desired control type as described

5.11 Setup special functions

No.	Name	Parameter Description
No. P19-86	Name Special Function	Parameter Description [00] none [x1] Simple Control [x2] Dir=V0 [x3] SC + DF [x4] Soft-Stop at Direction=0 [x5] SSD + SC [x6] SSD + DF [x7] SSD + SC + DF
		[1x] Short Floor function [2x] Deceleration with Speed Compensation Only used for open loop application (without encoder), for closed loop application (with encoder) the setting has no function. [3x] SF + DSC

5.12 Setup in- and outputs

19-67	Function Relay 1	[0] Functionality set with parameter P5-40.[1] VLT-Ready[2] Short circuit relay[3] Motor Contactors (as X59.4)
		[4] Ready signal (as X59.5)[5] Short circuit relay (standstill)[6] Speed V > 0,2 m/s[7] Start enabled

6 Functional descriptions

6.1 Automatic motor adaptation, AMA

Automatic motor adaptation (AMA) is an automated procedure used to measure the electrical characteristics of the connected motor and provides an accurate electronic motor model. It allows the drive to run the motor with optimal performance and efficiency. AMA is performed at standstill or during elevator operation. At standstill the measurement will be done under closed brakes and is load independent. The AMA routine supports asynchronous- and PM Gearless motors.

NOTE: AMA cannot be used with a sine-wave filter connected.

AMA is required after manual input of motor nameplate data. The basic measurement will be done at standstill (P19-63=1). After this measurement the motor is ready for operation. However, if this measurement fails on induction motors, 19-63=3 estimates data for the given motor. Further optimization (P1963=4) is optional and can be used for late fine tuning.

AMA, Motor adaption description

No.	Name	Parameter Description
19-63	Motor adaption	[0] not active / AMA completed
	for	[1] AMA at standstill
	asynchronous	[2] reserved for future use
	and	[3] calculation of motor data
	PM motor	[4] optimization during normal operation

AMA at standstill

- 1. Set the Parameter P19-63 = [1] and confirm with **[OK]**
- 2. Activate Inspection Mode. (Inspection mode control panel)
- 3. The motor is energized and the AMA measurement starts without opening the mechanical brake.
- 4. The AMA procedure is finished when the LCP status display changes from "P19-63 [1]" \rightarrow back to the status display "P19-63 [0]"
- 5. Disable Inspection Mode (Inspection mode control panel)

AMA during operation

- 1. Set the Parameter P19-63 = [4] and confirm with **[OK]**
- 2. The elevator should run now at least three times with nominal speed in normal operation.
- 3. The AMA procedure is finished when the LCP status display changes from "P19-63 [4]" → back to the status display "P19-63 [0]"

Equivalent Motor Data

If an AMA is carried out for ASM or PM motors, the equivalent motor data will be always overwritten. The parameters for the equivalent motor data for ASM and PM motors are listed in the table below.

Nr.	Parameter- Name	Motor- Typ
1-30	Stator Resistance (Rs)/[Ohm]	ASM
1-31	Rotor Resistance (Rr)/[Ohm]	ASM
1-33	Stator Leakage Reactance (X1)/[Ohm]	ASM
1-34	Rotor Leakage Reactance (X2)/ [Ohm]	ASM
1-35	Main Reactance (Xh)/ [Ohm]	ASM
1-36	Iron Loss Resistance (Rfe)/ [Ohm]	ASM
1-37	d-axis Inductance (Ld)/ [mH]	PM
1-40	Back EMF at 1000 RPM in [V]	PM

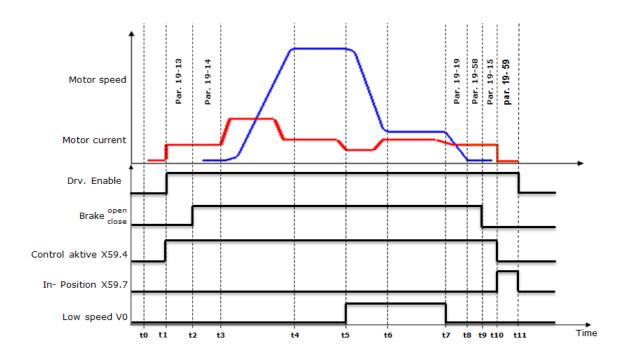
The values in parameters 1-30 to 1-36 indicates the resistance between line to common. The value in parameter 1-37, for the PM motor axis inductance between line to common.

NOTE:

In data sheets for motors are usually also specified the line-to-line data. In this case divide the value by 2 to get the line to common (star point) value. This also applies to measured values with a measuring device.

The value in parameter 1-40 indicates the back EMF in volts referred to 1000 rpm.

NOTE:


Data sheets for motors usually also contain information on the back EMF based on the nominal motor speed. The back EMF referred to 1000 rpm can be calculated as follows.

Example: Back EMF 320V at 1800 RPM.

Back EMF=(320V/1800)*1000=178V

6.2 Mechanical Brake Control

Time	Description	
t0	In- Position	
t1	Motor control on	
t2	Delay and open brake	
t3	Brake is open, speed reference active	
t4	Max. speed	
t5	Deceleration command	
t6	Low speed V0	
t7	Stop command	
t8	Positioning	
t9	Brake close	
t10	Motor off	
t11	In- Position	
Parameter	Description	
19-13	Brake Lift delay	
19-14	Brake delay	
19-19	Run in distance	
19-58	Delay after Stop	
19-15	Brake close delay	
19-59	Torque down time	

Measurement of mechanical brake delay P19-14 and monitoring time P19-87To optimize the timing of the mechanical brake, the mechanical delay can be measured by the drive.

Conditions:

- The car shall be empty and the ratio car-weight/ counter-weight shall be as desired (eq. 50%).
- Pre torque in parameter P19-16 shall be zero (can be set back after measurement)

Measurement procedure, Brake delay P19-14:

- Set P 19-14 to -1
- Start the Lift (eg. Inspection mode)

After the start, the value in P19-14 will be set to the measured time. If the brake does not react within 2000 ms, the measurement could not be completed, the value of P19-14 will stay at -1. Please check the installation.

Measurement procedure, Brake monitor time P19-87:

- Set P 19-87 to -1
- Start the Lift (eg. Inspection mode)

After the start, the value in P19-87 will be set to the measured time. If the brake does not react within 2000 ms, the measurement could not be completed, the value of P19-87 will stay at -1. Please check the installation.

6.3 Control of the mechanical brake with SBU 2.0

The SBU 2.0 is an electronic module for controlling the mechanical brake. Details can be found in the documentation for the SBU 2.0. The relevant input parameters and event messages are shown below.

Commissioning SBU with VLT LiftDrive LD302

After the installation has been completed, parameter 19-77 must be set to "1" on the frequency converter in order to commission the SBU. Switch the frequency converter mains off to apply the change and switch it on again after the display is dark. During startup, the SBU is now parameterized and prepared for operation. If the frequency converter shows "Operating mode" or "no motor data" in the status display, the commissioning of the SBU is complete. If necessary, settings on the SBU can now be changed.

The process in short:

- 1. Complete installation and verification of connections
- 2. Set parameter 19-77 to 1 on the frequency converter
- 3. Disconnect the frequency converter from the mains power supply and restart it again
- 4. If necessary, adjust the settings of the SBU

Parameter setup for SBU 2.0

Parameter 19-77, SBU- Parameter Index.

Parameter 19-78, SBU- Display/Input of the associated parameter values.

Par.	Index	read/ write	Default Value	Remark
19-77	1	r	value	SBU-control word
19-77	2	r		SBU-control word
19-77	10	rw		Travel distance from starting point before brake test [mm];
				0 = after acceleration
19-77	11	rw		Type of evacuation
				0 = normal operating mode
				1 = CAN
				The SBU gets the current speed from the shaft encoder.
				The evacuation speed is set in Par.19-78=14.
				2 = Timer
				The evacuation takes place with a continuous pulse control
				of the brake.
				The pulse times are set in Par.19-78=12 & 13.
				3 = FU
				The speed monitoring is monitored by the Drive.
				Speed specification in Par.19-54.
19-77	12	rw	500	SBU evacuation pulse time [ms]
19-77	13	rw	500	SBU evacuation pause time [ms]
19-77	14	rw	200	SBU evacuation speed [mm/s]
19-77	15	rw	50	Time duration of overexcitation [ms]
19-77	16	rw	0	Time duration of the switch-off ramp [ms]
19-77	17	rw	205	Overexcitation Voltage [V]
19-77	18	rw	105	Holding voltage [V] (105V – 205V)
19-77	19	rw	4	Shaft encoder node-id
19-77	20	rw	2	Number of brakes (1 to 3)
19-77	21	r		Shaft encoder - Resolution (number of pulses)
19-77	22	r		Shaft encoder – Path of resolution impulses
19-77	24	r		SBU SW-Version
19-77	-1			Set SBU to test mode (test signals can be set in the SBU)
19-77	-2	r		Array read error

Common test functions SBU 2.0

Brake test A

In the following, the function is checked by applying a brake during the ride.

Carry out the following test at standstill of the elevator:

- Set the SBU index parameters to path specification. Par. 19-77 = 10
- Set the path specification in mm. Par. 19-78 = 1000 (e.g. 1000 = 1000mm = 1m)
- Switch SBU to test mode. Par. 19-77 = -1
- Activate brake test A. Par. 19-78 = 1
- Enable a start command. (Inspection mode control panel).
- After the distance, the selected brake engages.
- The display shows: [SBU test brake A / Test finished].
- It must not be possible to start the elevator, the motor remains without current.
- Switch off the test mode of the SBU. Par.19-77 = 0

Brake test B

In the following, the function is checked by applying a brake during the ride. Carry out the following test at standstill of the elevator:

- Set the SBU index parameters to path specification. Par. 19-77 = 10
- Set the path specification in mm. Par. 19-78 = 1500 (e.g. 1500 = 1500mm = 1,5m)
- Switch SBU to test mode. Par. 19-77 = -1
- Activate brake test A. Par. 19-78 = 2
- Enable a start command. Inspection mode Control panel).
- After the distance, the selected brake engages.
- The display shows: [SBU test brake A / Test finished].
- It must not be possible to start the elevator, the motor remains without current.
- Switch off the test mode of the SBU. Par.19-77 = 0

Test STO- Function

In the following, the STO- circuit is not closed by an independent relay.

Carry out the following test at standstill of the elevator:

- Switch SBU to test mode. Par. 19-77 = -1
- Test of the monitor function. Par. 19-78 = 5
- Enable a start command. (Inspection Mode control panel).
- The display shows: [SBU- Test K1/K2 / Test finished].
- No error is generated!
- It must not be possible to start the elevator, the motor remains without current.
- To end the test run, switch the inverter off and on again once.

Test of the monitor function K1/K2 (EN81-20 5.9.3.4.4)

In the following, the non-dropout of K1/K2 is simulated by an independent relay. Carry out the following test at standstill of the elevator:

- Switch SBU to test mode. Par. 19-77 = -1
- Test of the monitor function. Par. 19-78 = 6
- The display shows: [SBU- Test K1/K2 / Test finished].
- The error memory, Par. 19-81 displays 516.
- It must not be possible to start the lift (EN81-20 5.9.3.4.4)
- Switch off the test mode of the SBU. Par.19-77 = 0

Contactless monitoring with SBU 2.0

Setup:

After wiring and commissioning the contactless monitoring features can be activated.

Steps:

- Measurement of mechanical brake delay and monitoring time as described in chapter "Measurement of mech. brake delay P19-14 and monitoring time P19-87"
- Set P19-65 to xx3 (For details please check P19-65 description)
- Testing of contactless brake monitoring.

NOTE:

- Mandatory at commissioning, for each important change in Lift configuration and recurrent testing.
- For all tests, P19-16 "max torque", need to be set to zero. The original value can be set after all tests.

1. Test of brake 1, no holding torque

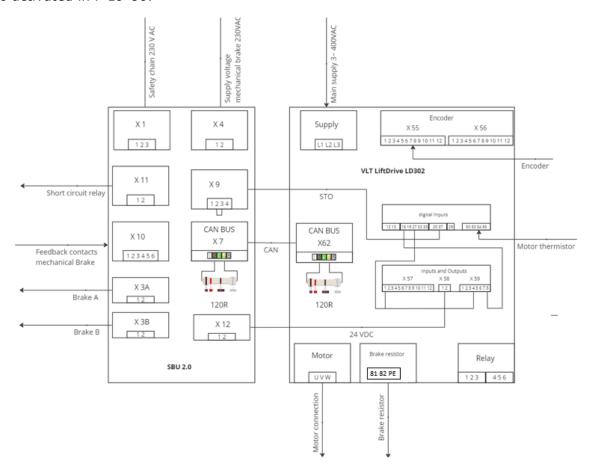
- a. Set P 19-77 to -1
- b. Set P 19-78 to 11
- c. Start the lift.
- d. Expected reaction: Drive will deactivate the inverter and show Triplock (272) in LCP
- e. Triplock shall be removed by setting P19-64=1

2. Test of brake 2, no holding torque

- a. Set P 19-77 to -1
- b. Set P 19-78 to 12
- c. Start the lift.
- d. Expected reaction: Drive will deactivate the inverter and show Triplock (273) in LCP
- e. Triplock shall be removed by setting P19-64=1

3. Test of brake 1, brake does not release

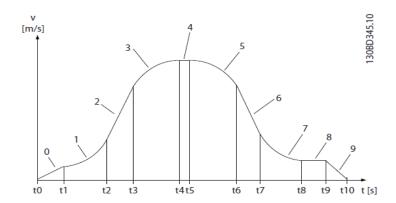
- a. Set P 19-77 to -1
- b. Set P 19-78 to 13
- c. Start the lift.
- d. Expected reaction: Drive will deactivate the inverter and show Triplock (274) in LCP
- e. Triplock shall be removed by setting P19-64=1


4. Test of brake 2, brake does not release

- a. Set P 19-77 to -1
- b. Set P 19-78 to 14
- c. Start the lift.
- d. Expected reaction: Drive will deactivate the inverter and show Triplock (275) in LCP
- e. Triplock shall be removed by setting P19-64=1

Schematic diagram of the LiftDrive LD302 with SBU#

The following schematic shall be seen as example and leeds to a working system. Safety requirements of the whole control cannot be covered in this example. Therefore, the safety considerations need to be covered as part of system engineering process. In case the system is designed according to the example, the simple control mode needs to activated in P 19-86.

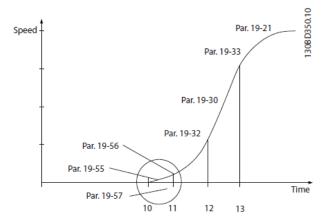

6.4 Speeds, Acceleration, Jerks

Speeds

No.	Name	Parameter Description	
19-20	max. speed [m/s]	Set the max. speed in m/s for the Lift. Depending on the nominal motor speed and the settings in parameters 19-10 to 19-12, the maximum speed is limited to 125% of the rated motor speed.	
19-21	V4 [m/s]	Nominal speed	
19-22	V0 [m/s]	Leveling speed	
19-23	Vi [m/s]	Inspection speed	
19-24	V3 [m/s]	Intermediate speed 1	
19-25	V2 [m/s]	Intermediate speed 2	
19-26	Vn [m/s]	Releveling speed	
19-28	V1 [m/s]	Intermediate speed 3	

Overview of the motion profile

The profile of the elevator operation can be separated into 10 single parts of movement which can be adjusted individually.



Parameter	Identifier	Name	Description
19-19	9	Run in distance [mm]	Distance of last proximity switch
			to ground level
19-21	4	V4 [m/s]	Nominal speed
19-22	8	V0 [m/s]	Run in speed
19-30	2	Acceleration [mm/s ²]	
19-31	6	Deceleration [mm/s ²]	
19-32	1	Start Jerk [mm/s³]	when jerk values are too low,
19-33	3	Accel. Jerk [mm/s³]	programmed acceleration values
19-34	5	Decel. Jerk [mm/s³]	may not be reached
19-35	7	Run in Jerk [mm/s ³]	
19-55	0	L-start acc [mm/s ²]	Linear start function can be
19-56		L-start speed [mm/s]	deactivated when L-start time is
19-57		L-start time [ms]	set to 0

Linearstart

Linearstart is useful for comfortable start of the elevator in difficult mechanical environment. E.g. L- Type car frame or glide shoes.

Parameter	Description	Unit
19-57	L- start time [ms]	[ms]
19-55	L- start Acceleration	[m/s ²]
19-56	L- start Speed	[m/s]
19-32	Start Jerk	[m/s ³]
19-30	Acceleration	[mm/s ²]
19-33	33 Acceleration Jerk [m/	
19-21	Nominal Speed, V4	[m/s]

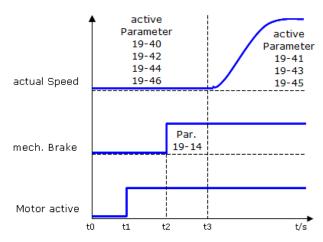
Predefined Comfort Settings

To get a quick setting of acceleration and jerks it is possible to use different reselection's of comfort.

No.	Name	Parameter Description	
19-38	Comfort] no preselection active	
		[1] gentle	
		[2] dynamic	
		[3] normal	

Control during Inspection mode panel control and inspection

When operating in Inspection mode panel control, the speed Vi must always be used. During inspection, the small speed Vi should always be selected, and if a higher speed is necessary, the faster speed V1 should be used. (fast, slow) This allows the switching between the speeds.



6.5 Deceleration distance

In Lift installations it is useful to know the actual deceleration distance before starting operation. For this purpose, it is possible to calculate the distance for each speed. Those calculated values can be used for the optimization of the control system. The value is based on the deceleration distance of the chosen speed down to v0 including 100 mm run in speed and including run in distance (P19-19).

No.	Name	Parameter Description	
19-99	Distance	Shows the calculated deceleration distance of the last travel	
	during	[-1] calculates deceleration distance V1 (P19-28)	
	deceleration	[-2] calculates deceleration distance V2 (P19-25)	
		[-3] calculates deceleration distance V3 (P19-24)	
		[-4] calculates deceleration distance V4 (P19-21)	

6.6 Speed PID controller

Speed controller settings at start

No.	Name	Parameter Description	PM-	Asynchrono
			motor	us- motor
			recommended values	values
19-40	KP-Gain at	Proportional part of the speed controller.	50	100.0
	start	Decrease the value when motor makes		
		noise.		
19-42	I-time at start [ms]	Integral part of the speed controller	12	200.0
19-44	Filter time at start [ms]	Filter time of the speed controller, can be used to filter out vibrations from the system or disturbances of the encodersignal	1	4.0-10.0
19-46	Pos. gain start	Position controller gain during start	0.2 - 0.5	0

Danfoss

Quick Guide VLT Lift Drive LD302

Speed controller settings during operation

No.	Name	Parameter Description	PM-	Asynchrono
			motor recommended values	us- motor recommended values
19-41	KP-Gain at	Proportional part of the speed controller.	30 -70	100.0
	operation	Decrease the value when motor makes noise.		
19-43	I-time operation [ms]	Integral part of the speed controller	200.0	200.0
19-45	Filter time operation [ms]	Filter time of the speed controller, can be used to filter out vibrations from the system or disturbances of the encodersignal	4.0-10.0	4.0-10.0

6.7 Control sources P19-66

No.	Name	Parameter Description
19-66	Dig_Serial	[0] Drive control by digital terminals
		[1] Serial bus control DCP3
		[2] serial bus control DCP4
		[3] Can Open DSP417
		Power cycle drive after change of control type

Operation with serial bus DCP3 and DCP4

The drive supports the serial Lift protocol DCP3 and DCP4. Due to this protocol all necessary signals and information will be transferred by the serial bus. As a matter to the fact the wiring of the input control signals for direction and speed can be reduced.

Connections

Terminal block	Terminal number	MCO
	CS	Chip Select
	62	RXD/TXD P
X60	63	RXD/TXD N
	66	0V
	67	5V

Data readouts

No.	Name	Parameter Description
19-73	BUS CMD	Display parameter for DCP command byte and selected speed from Lift controller. Use Lift drive setup tool for logging.
1974	BUS STAT	Display parameter for DCP status byte and extended status to Lift controller. Use Lift drive setup tool for logging.

DCP4 settings

In DCP4 the motor encoder shall be aligned to the shaft encoder. For this reason, the Lift controller transmits the actual shaft encoder position to the drive after each movement. The distance deviation is displayed in P19-69 Sync Position. To align motor encoder with shaft encoder the deviation in P19-69 shall be entered manually in P19-72 Position corr. factor.

No.	Name	Parameter Description	
19-69	Sync Position	The position deviation is updated after each journey. This allows for the alignment of residual path detection. The correction value is determined and displayed with P19-69 = 1. After that, the elevator is free to move as desired. The displayed values range from 0.950 to 1.050 (+/-5%). If exceeded, error 225 is generated. In case of deviations, the system data should be reviewed. Note: Alignment of the residual path detection is mandatory. The correction value adjusts the mechanical lift parameters to the motor encoder, enabling optimal positioning at the stop. The displayed correction value must then be entered in P19-72	
19-72	DCP4- Position corr. factor	• • • • • • • • • • • • • • • • • • • •	

Operation with Can Open DSP417

The drive supports Can Open DSP417.

Supported Features:

- Heartbeat guarding of lift controller
- Profile velocity mode
- Profile position mode (Can Open shaft encoder necessary)
- EMCY-telegram
- Virtual position encoder 3 (for slip measurement)
- Virtual terminal (for remote parametrization and diagnosis)
- Pre-torque at start (with Can Open load measuring device) in preparation

Connection

Terminal block	Terminal number	MCO Can Bus
	1	N/A
	2	CAN- L
X62	3	DRAIN
	4	CAN- H
	5	N/A

NOTE: If the drive is the last node in the network an external termination according to CAN Open specification is required. (120 Ohm between CAN-H and CAN-L) The terminal strip X62 is located at the upper right on the casing. The connections are exposed by breaking out the designated windows.

Danfoss

Quick Guide VLT Lift Drive LD302

Speed setting

All speed references set directly by the Lift controller via CAN-Bus.

P19-20 Max. speed used for speed limitation

P19-22 V0 used together with P19-19 Run in distance to define the run-in ramp.

All other speed parameters not used in CAN-Open DSP417.

No.	Name	Parameter Description
19-66	Dig_Serial	[3] Can Open DSP417
33-90	CAN node ID	2 (Default)
33-91	CAN baud rate	[21] 250 Kbps (Default)

NOTE:

Power cycle the drive after change of control type.

Data readouts

No.	Name	Parameter Description
19-73	BUS CMD	Display parameter for DSP command byte
1974	BUS STAT	Display parameter for DSP status byte

6.8 Position mode

In position mode, the motor encoder shall be aligned to the shaft encoder. For this reason, the Lift controller transmits the actual shaft encoder position to the drive after each movement. The distance deviation is displayed in P19-69 Sync Position. To align motor encoder with shaft encoder the deviation in P19-69 shall be entered manually in P19-72 position corr. factor.

No.	Name	Parameter Description
19-69	Sync Position	The position deviation is updated after each journey. This allows for the alignment of residual path detection. The correction value is determined and displayed with P19-69 = 1. After that, the elevator is free to move as desired. The displayed values range from 0.950 to 1.050 (+/-5%). If exceeded, error 225 is generated. In case of deviations, the system data should be reviewed. Note: Alignment of the residual path detection is mandatory. The correction value adjusts the mechanical lift parameters to the motor encoder, enabling optimal positioning at the stop. The displayed correction value must then be entered in P19-72
19-72	DCP4- Position corr. factor	Value adapts the mechanic settings of the Lift drive to the shaft encoder. Only when P19-72 is aligned with 19-69 an optimum approach at floor level is possible. Alignment of residual path detection in DCP4. Here, the correction values determined under P19-69 are entered. The values must be within 1 +/- 5%. If exceeded, error 225 is generated. Verify system data in case of deviations. Only when P19-72 is aligned with 19-69, an optimal approach to floor level is possible.

6.9 Operation with absolute encoder (SSI/EnDat/BISS-C)

For running PM-motors with frequency converters it is necessary to know the exact rotor position. Usually the rotor position is determined with the help of an additional single turn absolute encoder which is mounted on the rotor shaft. The Danfoss Lift drive doesn't need an absolute encoder for the operation of pm motors. It detects the rotor position by creating a test signal before the first start of the motor. However, it is possible to use a single turn absolute encoder for the rotor position detection as well. It is recommended to switch to absolute encoder type after the normal commissioning is finished.

Note: Operation with Absolute encoder can only work if Encoder direction P19-05=0!

No.	Name	Parameter Description
19-08	Abs. encoder type	[0] no absolute encoder active [1] SSI encoder [2] EnDat encoder [3] BISS-C
19-09	Abs. encoder offs	In new motors, the absolute encoder is factory-installed, thus the offset is 0. The input value is used to set the offset between the absolute encoder and the position of the motor shaft. After input, the absolute encoder offset should be saved. Par.1964=1. The value range is 0 to 8192. The value 8192 corresponds to 360°. Par.19-09 = -1. For absolute encoders, the absolute value can be displayed in the parameter. Par.19-09 = -2. The encoder offset can be determined with the next return journey (Inspection mode control panel) after stopping (e.g., after changing the encoder). Note: No offset needs to be entered for incremental encoders. Parameter 19-09 = 0. If the motor manufacturer has performed a mechanical alignment for motors with absolute encoders, it is generally not necessary to enter an offset. For safety, the offset should be checked. Par.19-09 = -1. [-2] Determination of Encoder Offset The encoder offset is determined with the next return journey (Inspection mode control panel). The offset is calculated after stopping. [-1] For absolute encoders, the absolute value can be displayed in parameter 19-98. No movement of the drive is possible. [0-8192] Absolute Encoder Offset.
19-98	Abs. enc. position	Display of the rotor position determined by the absolute encoder after power on. If P19-09 = -1, the rotor position display is continuously updated. The value is updated after power is turned on.

6.10 Operation with UPS, Evacuation mode

In operation with UPS, it may be necessary to know the direction of the load. The frequency converter automatically detects the slight load direction at each start.

Load direction

The specific load direction can be indicated with a digital output. See P19-84. For PLCs without possibility to use the given load direction, the drive can choose the light load direction independently. Parameter 19-86 shall be set to 2X or 3X. See P19-86.

No.	Name	Parameter Description
19-85	Load direction	[-1] Load direction down (full cabin)
		[1] Load direction up (empty cabin)

For an empty cabin, the load direction should be P19-85 = 1. If not, set P19-84 to 2, inverse.

Cabin load	load direction	P19.85	Output X59.1
Empty	Up	1	0
Full	Down	-1	1

The cabin load is measured directly after the mechanical Brake is opened. So, it is important for the proper functionality to set the value P19-14 brake delay long enough.

UPS Mode

If a UPS with reduced power is used for evacuation, this must be communicated to the frequency converter via a signal at input X57.8 or via serial communication. In UPS mode, the speed is always limited to the evacuation speed (P19-22).

Danfoss

Quick Guide VLT Lift Drive LD302

6.11 Operation VVC+ open loop for induction motors

The drive can operate asynchronous motors without encoder in open loop mode.

Function	Parameter- number	Parameter name	Value recommended values	Remark
Basic Setting	P32-00	Incremental Signal Type	[0] None	No encoder is needed
Release	P19-13	Brake Lift delay	300-1000ms	Motor magnetizing time before releasing the brake.
Brake	P19-14	Brake delay	0-500ms	Delay of speed reference until the brake is totally opened.
	19-55	L-start acc	100mm/s ² - 200mm/s ²	To avoid a rollback of the cabin it can be
Start	19-56	L-start speed	0.050m/s - 0.100m/s	necessary to use the linear start function to
	19-57	L-start time	200ms-1000ms	accelerate the drive quickly to the minimum speed.
	P2-21	Activate brake speed	0-300 rpm	Speed level of engaging the brake.
Close Brake	P19-15	Brake close delay	300-100ms	Additional magnetizing time to hold the load until the brake is fully closed.

6.12 Extended Settings

Nr.	Name	Parameter Description
Nr. P19-86	Name Special Function	Parameter Description [00] Standard Control [x1] Simple Control, Release function via direction inputs [x2] Dir=V0, Control without V0 [x3] SC + Dir=V0 [x4] Soft-Stop at Direction=0, Soft stop on direction [x5] SSD + SC [x6] SSD + Dir=V0 [x7] SSD + SC + Dir=V0
		[1x] Short F loor function, short stop journey [2x] USV -Operation, Evacuation in load direction Only used for open loop applications (without encoder), with closed loop (with encoder) the setting has no function. [3x] SF and USV

Simple Control, Release function via directional inputs

With simple control operation can be started by enabling the direction signals at T32/33. The enable signals will be wired as normal however the normally opened relays contact in the path of the motor contactors k1 and k2 will now be controlled by the contactor function of the drive. This can be digital output X59.4 or relays 1 (P19-67 Function Relay 1 [3] contactors). That means, with the setting of a direction signal and a speed signal the relays contact of K12 will be switched, which leads to the switching of the motor contactors and the enable signal to T27 and X57.1.

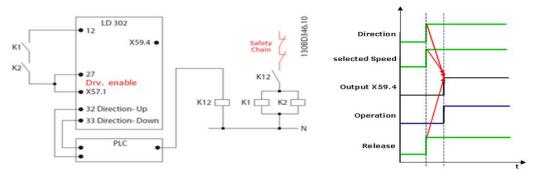


Illustration: Parameter 19-86 Enable Simple Control=[0]

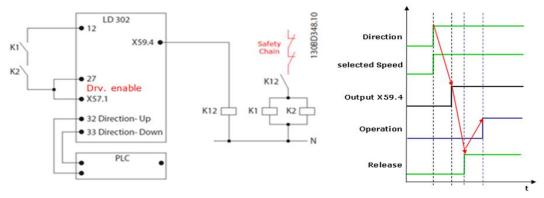
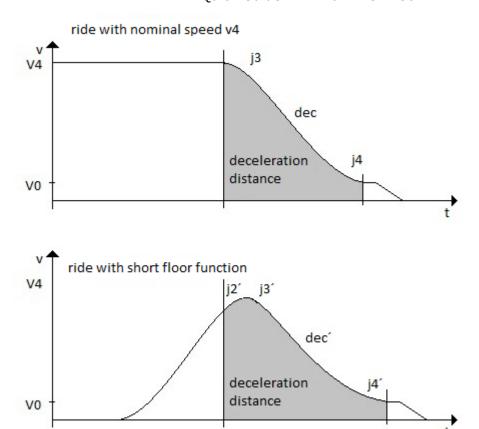


Illustration: Parameter 19-86 Enable Simple Control=[1]

Dir=V0

This function uses the directions signals up and down for V0. The run-in speed V0 is always active when a direction signal is active. The priority is on the fast speed input. When fast speed is disabled slow speed is active. This function can be used with all control modes where V0 run in speed has the lowest priority. That is P19-50 = 1 or 8.


Softstop at dir=0

When disabling the direction signals during movement a soft stop will be executed. The mechanical brakes will be closed at standstill. The function can be used in combination with inspection boxes which use the direction signal to stop the drive.

Short floor function

The Lift drive executes the short floor function if the selected speed cannot be reached due to short floor distances. The jerks j2, j3 and j4 and the deceleration will be recalculated and adapted to the deceleration distance of the nominal speed v4. As a result the approach at v0 is independent of the time when run in speed v0 is selected. A overshoot will be prevented as well as long slow speed duration. The short floor function is only available for nominal speed v4.

UPS operation in load direction

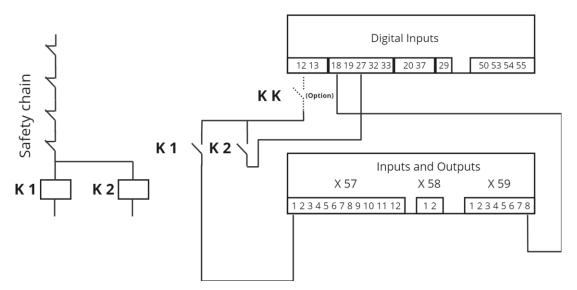
If this function is activated, the drive will operate the elevator in load direction, independent on the given direction control signals, in case of activated UPS input.

6.13 Use of terminals T27 and X57.1

The following circuit examples for applications with terminals T27 and X57.1.

These are to be understood as examples and must be compared with the requirements of the respective controller.

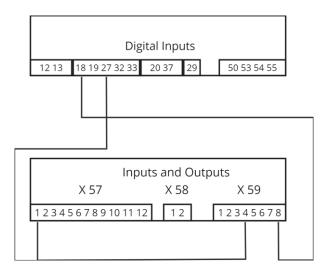
The examples can also be linked to one another as desired.


The digital inputs T27 and X57.1 provide the following functions:

- 1. Load-free switching at the output of the frequency converter
- 2. Quick stop (coast) in the event of an open safety chain
- 3. Quick stop (coast) in the event of an active short circuit on the motor windings
- 4. Monitoring of the motor contactors or relays for the STO (see Chapter XX)

Both digital inputs T27 and X57.1 must not be permanently bridged with 24 VDC and must have the status "1" before each journey and be switched off after each journey. Otherwise, a new journey is not possible.

Application Monitoring motor contactors and optionally with short-circuit circuit for the motor windings (NC).


• System with relays or contactors for the motor, optionally with STO and optionally with a short-circuit circuit for the motor winding (NC). optional.

KK= short-circuit relay

• System without relays and contactors for motor, short circuit or STO

Function Outputs, Terminal X59.1 - X59.7

No.	Name	Parameter Description
19-84	Function X59.1-7	Functions of output X59.1 – X59.7
		Parameter 19-84 displays a seven-digit value. Each
		digit represents the outputs X57.1-7. The first digit
		(right digit) represents output X59.1, the last digit
		(left digit) represent output X59.7.
		Parameter value of 0,1,2,3, or 4 defines the output
		function for each decimal place.
		Output functions:
		Parameter value 0,1,2,3 or 4 defines for each digit
		the output function.
		0: default output function.
		1: output of the load direction
		2: output load direction inverse
		3: Warning direction change counter
		4: Fault Braking IGBT / short circuit Brake resistor
		5: Short circuit relay (standstill)
		6: Speed V > 0,2 m/s 7: Start enabled (see P 19-67)
		The frequency converter is ready and has accepted
		the start. With this feedback, the missing direction or
		speed signals can be applied. This function is required
		by some controllers.
		Default output function, Par. 19-84 = 0000000:
		- X59.1, Over Speed
		- X59.2, Control Speed 1
		- X59.3, Control Speed 2
		- X59.4, Output contactor
		- X59.5, Ready Signal
		- X59.6, Over Temperature
		- X59.7, Standstill Position reached
19-85	Load direction	[-1] Load direction down (full cabin)
		[1] Load direction up (empty cabin)

6.14 Monitoring functionalities

No	Namo	Parameter Description
		
No. 19-65	Monitoring	Parameter Description [000] Monitoring not active [xx1] monitoring brake feedback [nc]. Monitoring of brake feedback contacts normally closed, input X57.9 and 10. [xx2] monitoring brake feedback [nc]. Monitoring of brake feedback contacts normally open, input X57.9 and 10. [x1x] monitoring governor [no] Speed limiter normally open, terminal 19. [x2x] monitoring governor [nc] Speed limiter normally closed, terminal 19. [1xx] Contactor monitoring, terminal 27 and X57.1. [2xx] Safe Stop (STO) monitoring, terminal 37. [3xx] Contactor monitoring and Safe Stop (STO), terminal 27, terminal X57.1, and terminal 37. [3xx] Contactor monitoring and Safe Stop (STO), terminal 27, terminal X57.1, and terminal 37.
		terrimar 7.5712, and terrimar 571

Monitoring of brake feedback due to DIN EN 81-20

The application controller MCO361 can monitor the feedback contacts of the mechanical holding brake. Monitoring can be carried out both with break contacts (NC) and with make contacts (NO). If an error is detected, restarting is prevented (locking).

Driving off is only possible again after a reset. Journeys with too little journey time (shorter than brake monitoring delay time P19-87) are not monitored. Driving off again is only possible when the brake is closed. The lock remains active even if the power supply is interrupted. See chapter Reset locked error.

An error is detected, when:

- at least one brake is not closed when the drive command is received.
 - o error mech. brake 1
- at least one brake does not open during travel (duration of constant travel) at least for the value in parameter 1987 (seconds)
 - o Error mechanical brake 2
- at least one brake does not close within the time specified in parameter 1987 after the end of a regular run.
 - o error mech, brake 3

States and reactions	Output status for mech. brake	State of feedback contacts at input X57.9 and X57.10	State delay time P19-87	Reaction of Lift drive
Before opening	0	Applied	x	x
mechanical brake (before the drive)	0	Not applied	x	Brake failure 1
Before closing	1	Released	X	X
mechanical brake	1	Not released	1	Brake failure 2
After closing	0	Applied	X	Х
mechanical brake	0	Not applied	1	Brake failure 3

0 = Not active; 1 = Active; X = Not used

NOTE:

The notes apply under "An error is detected if:"

As a protection against manipulation the functionality of brake monitoring can only be deactivated by setting the drive to factory settings. However, a change of contact types is possible.

NOTE:

The monitoring due to DIN EN 81-20 is only available if in parameter 19-90 the identifier A3 is displayed. e.g. S A3 B X.XXT/RXXX.

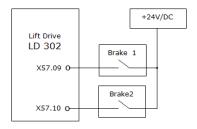


Illustration: Schematic drawing Brake Monitor with N.O. contacts, P 19-65 = [x1]

Test instruction for the installation:

During commissioning of the elevator and after every change of wiring and at every first or recurring check the proper functionality of the brake monitoring shall be rechecked. At standstill one of the two brakes shall be released manually and a start signal shall be given. After receiving the start signal the message text "Brake failure 1" shall be displayed. The start shall be inhibited, and the drive shall be locked. The manually released brake can now be applied again. The fault can be reset by setting the value of P19-64 to -1 or pressing the LCP-keys [Back] + [Reset] simultaneously.

NOTE: For reset of critical errors see chapter Reset locked error.

The procedure shall be repeated with the second brake. Reaction of the drive shall be as described before. If the reaction of the drive is not as described a fault or manipulation is suspected. The wiring shall be checked or changed if necessary.

After fault correction the complete test shall be repeated.

If the manual actuation of the brakes is not possible it is necessary to simulate the state "brake released" at the relevant signal input with a bridge to 24 VDC or an interruption of the signal.

Monitoring of the governor feedback contact P19-65 x1x [no]/ x2x [nc]

The feedback contact of the speed governor device can be monitored by the Lift drive. For this purpose, the digital input 19 on the control card can be used. The function cannot be combined with the standby function of the drive which uses the same digital input. The function locks the drive if one of the following situations is detected.

- Start signal received and no change of signal level from low to high was detected before
- Signal level of feedback contact changed from high to low during movement

The interlock stays active even in the case of a loss of power supply, unless a reset is done by setting P19-64 to the value -1 or by pressing the LCP-keys [Back] + [Reset] simultaneously. The monitoring can be implemented with normally open [no] contacts as well as with normally closed [nc] contacts.

NOTE: For reset of critical errors see chapter Reset locked error.

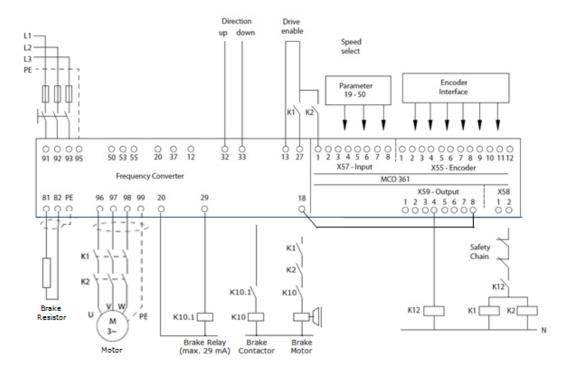
Functional description:

- At each start it will be checked if the speed governor contact has been switched from low to high level before. If that is not the case it will be assumed that faulty wiring or defect contactors or short circuit to 24V could be the reason. The Lift drive creates an alarm and an interlock because this is seen as a dangerous malfunction.
 - Following failure will be created:
 - 249 Governor Fault
- During the operation the signal level of the speed governor contact is monitored as well. If signal level should drop to low an alarm will be created and the drive locked. This is seen as well as dangerous malfunction of the monitoring device.
 - Following failure will be created:
 - 249 Governor Fault

After the detection of a dangerous malfunction of the governor contacts the Lift drive stays out of order (locked).

The interlock stays active even in the case of a loss of power supply, unless a reset is done by setting P19-64 to the value -1 or by pressing the LCP-keys [Back] + [Reset] simultaneously.

NOTE: For reset of critical errors see chapter Reset locked error.


Monitoring of motor contactors, P19-65 1xx / 3xx

Due to separate wiring the digital input signals X57.1 and terminal 27 on the control card can be used for the monitoring of the motor contactors. The monitoring shall be done with normally opened [no] contacts. The function prevents the start of the drive if one of the following situations has been detected.

- Start signal received and no change of signal level from low to high on feedback contacts was detected before
- After the receiving a start signal and the output of signal contactors on X59.4 the signal level of the feedback contacts refuses to switch to high level within a time of 10 seconds.

After detecting a dangerous malfunction of the motor contactors, the lift drive remains locked. The appropriate wiring must be carried out to implement the monitoring of the motor contactors. The contacts of the motor contactors K1 and K2 must be connected separately to terminals 27 and X57.1 as shown below.

NOTE: For reset of critical errors see chapter "Reset locked error".

Error messages:

- At each start it will be checked if the motor contactors have been switched off before. If that is not the case, it will be assumed that faulty wiring or defect contactors or short circuit to 24V could be the reason. The Lift drive creates an alarm and an interlock because this is seen as a dangerous malfunction.
 - Depending on the cause one of the following failures will be created:
 - 253 CO1 T27 on, 254 CO2 X57/1 on
- If after the receiving of a start signal and the output of the signal contactors on X59.4 the signal level of the feedback contacts refuses to switch to high level within a time of 10 seconds leads to an alarm and the start will be cancelled. The drive will not be locked because this is seen as a not critical fault which leads to a save state.
 - Depending on the cause one of the following failures will be created:
 - 251 CO1_T27 off, 252 CO2_X57/1 of

Test of the function:

To test the function, use only one input, T27 or X57.1 and connect it permanently to 0 V/DC. Please disconnect the original wiring from the connectors before to avoid short circuits. With an active start command and a delay of max. 10 s, the frequency converter generates an alarm as described in the functional description. After the test, the wiring must be restored as provided in the circuit diagram.

NOTE:

For reset of critical errors see chapter Reset locked error.

Monitoring of STO P19-65 2xx / 3xx

With this function, the STO (Safe Torque Of) can be monitored. This ensures the detection of wrong connections during installation at every start. This function is only relevant at operation without motor contactors.

Test of the function:

For the test, the wiring on the STO must be removed (Terminal 37). Terminal 37 must then be permanently connected to 24V/DC (terminal 12). An error message only appears at the start of the second journey. If there is no signal change after the second start, the frequency converter is locked and error message 259 (STO T37 on) is generated. After the test, the original wiring must be restored.

NOTE:

For reset of critical errors see chapter Reset locked error.

Monitor Motor and Frequency Drive

Nr.	Name	Parameter description
P19-70	Monitor Motor	[1] = Factory default
	and Frequency	[XX1] = Monitoring Motor Thermistor
	Drive	[X1X] = Deactivation of motor phase monitoring

6.15 Standby function

The function can decrease the power consumption of the drive when no operation is needed. All digital outputs and all relays will be switched of. If the control card temperature exceeds 56 °C degrees, the fan will be started with a reduced speed of 50%. Standby function can be activated with input terminal 19 or by DCP telegram. If digital inputs are used to control the drive the standby function cannot be combined with the governor monitoring function.

6.16 Test run mode

19-60	Test run mode	[1] Gear ratio test function. The drive moves one revolution of the traction sheave. Can be used to check mechanic settings. [2] Fang Release function. Applies torque shocks to
		release cabin from mechanic fang device.

Gear ratio test function

Parameter 19-60 = 1. After start in inspection mode the drive will be started with slow speed. After one revolution of the traction sheave the motor will be stopped. Adjust the gear ration new if the traction shave does not exactly turn one revolution.

Safety gear release function

Parameter 19-60 = 2. After start in inspection mode the mechanic brake will be opened, and periodic torque shocks will be applied to the motor to release the mechanic fang. This function is only allowed for start direction Up. The function will be disabled automatically after the cabin has moved 100 mm or after stopping the drive by control signal.

6.17 Direction Change Counter

For ropes with a plastic sheath, the following counters can be used to determine the changing cycles. In the event of a device failure or after the factory setting, the counter values can be lost. Therefore, an additional, external counting device should be available.

Direction Change 1:

Direction change counter 1 is deactivated in the factory setting. It can be activated by entering parameter 19-71 (Set Counter). The range of values for this counter is 1 to 16,000,000. After each movement with a changed direction, the counter value in parameter 19-93 (direction counter 1) is reduced by one.

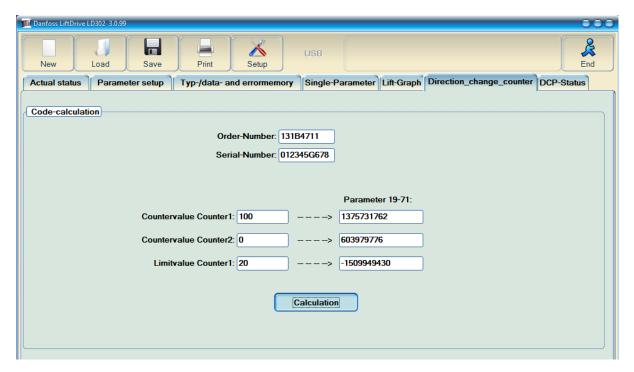
Warning threshold:

If the counter value has fallen below the warning threshold, this is signaled via a digital output. The corresponding output can be defined by setting the output functionality to the value 3 in parameter 19-84. Furthermore, a message appears on the LCP when there are no other warnings. Reaching the warning threshold is recorded in the event memory.

Counter zero:

The elevator no longer runs in normal operation. A signal is set to the digital output. The cabin can only be moved using Ve (V0) and return speed (Inspection mode control panel speed). To unlock, a new value for counter 1 must be entered in parameter 19-71. Direction change counter 1 can be deactivated again by setting the drive to factory setting (all data will be lost).

Direction change counter 2:


Direction change counter 2 is always active. The counting direction is positive. The display parameter P19-94 has a value range from 0 to 2147483646. After reaching the maximum value, the counter starts again at zero. The change of direction counter 2 can be preset in the range from 1 to 16,000,000 using parameters 19-71.

Danfoss

Ouick Guide VLT Lift Drive LD302

Set counters and limits:

The entry is coded for the counter values and limits in parameter 19-71. The entry contains the information as to whether direction change counter 1, direction change counter 2 or the warning threshold for direction change counter 1 should be set. The setup tool is required to determine the input values. The Direction change counter tab must be selected in the setup tool. To generate the coded input values for P19-71, the order number (P15-46) must be entered in the Order-Number field and the serial number (P15-51) of the frequency inverter must be entered in the Serial-Number field. The target values for the counters can now be entered in the three fields. The input values for P19-71 are generated by selecting the "Calculation" button.

The values can then be entered one after the other in parameter 19-71. The input value is checked by the application. If the entry is successful, the parameter is set to "0". If the input data is not plausible, the value -1 appears.

From the activation of direction change counter 1, digital output 59.2 only outputs the counter warning. If the counter is deactivated (by factory setting), X 59.2 outputs a speed-dependent value.

6.18 Alarm log

Alarm log of the drive

The Alarm log of the drive can be reached by pressing [Alarm Log]. The alarm log shows a list of the last 5 alarms of the drive. To get additional information, select the alarm with the arrow keys and press [OK].

To get the exact information about the occurrence of the alarm, the alarm time can be compared with the operating hours of the drive in P15-00.

Example:

P15-50 = 345 h, alarm log time: 1217075s = 338 h 4min 35 s

The alarm occurred 7h 55min 25 s ago.

Alarm log of the Lift controller

No.	Name	Parameter Description	
19-80	Log No	"Error memory of elevator controller MCO361. Display of a list of the last 10 alarms / errors. The last error is number '1'. Using parameter 19-80 = 1-10, alarms / errors 1-10 can be read out."	
19-81	Error code	Display of the error code corresponding to the error numbers in P19-80.	
19-82	Error time	Display of the error time in hours [h], corresponding to the error numbers in P19-80.	
19-83	Function Error log	[0] Alarm, only stores the alarms [1] Reset, Clears the error memory [2] Alarm + Event + Messages, Stores the alarms, all events, and messages	

6.19 Reset of errors with locking

If a safety-relevant error is detected, further operation is locked and a new journey can only be carried out once the error has been reset by competent personnel. The lock remains active even if the power supply is interrupted. The lock is "voltage safe" stored until a reset is performed by entering P19-64= -1 or by simultaneously pressing the [Back]+[Reset] keys.

NOTICE:

Reset of critical errors, message "Drive locked" with parameter P19-64 --> [-1]. may only be reset by trained specialists.

6.20 Short circuit function:

In practice, PM motors are short-circuited to provide stronger deceleration in case of a fault or to limit the speed during an evacuation. The VLT LiftDrive provides the following functions for this purpose:

- 1. Short circuit only in case of power failure and drive fault.
 - The contactor or relay used for the short circuit is permanently engaged and only disengages in the event of a power failure or fault in the frequency converter. See Parameter 19-67 [1] VLT Ready.
- 2. Short circuit in case of power failure, VFD fault, and rapid stop.
 - The contactor or relay used for the short circuit is permanently engaged and disengages in the event of a power failure, fault in the frequency converter, or when the drive is aborted by removing the signals from terminals 27, X57.1, or 37. In serial control, the function is also activated by an aborted drive. See Parameter 19-67 [2] Short circuit contactor.
- 3. Short circuit at standstill a. The short circuit is activated at every standstill.
 - For Relay 1, see Parameter 19-67 [5] Short circuit contactor at standstill. c. For digital outputs, see Parameter 19-84 (5) Short circuit contactor at standstill.

7 Operation

7.1 Startup

After setting up the drive as described in chapter "Initial commissioning", the drive is ready to start operation. However, depending on the mechanical system further adaptations can be necessary. Please follow in case of unexpected behavior the instructions below.

7.2 Test

As first step after programming the drive it is highly recommended to test the basic operation in inspection mode with reduced speed. In case of unintended behavior please follow the instructions in the next sup- chapters.

Car direction

In case Motor runs controlled, but in wrong direction, the reference can be adjusted to the mechanical system:

No.	Name	Parameter Description
19-04	Car direction	[0] normal
		[1] inverted

Uncontrolled movement (With absolute encoder)

In case of used absolute encoder, the motor shall be connected U-V-W to the drive terminal U-V-W in the right order. If this is double checked, a wrong encoder offset can lead to an uncontrolled movement. Please make sure that P19-05 is set to 0. The encoder offset can be measured with P19-09.

No.	Name	Parameter Description
19-09	Abs. encoder offs	In new motors the absolute encoder is mounted by factory, so the offset is 0. If encoder was dismounted or changed, the exact position to the rotor shaft shall be determined. [-2] detection of encoder offset Activate inspection mode control panel. Offset will be determined after stop [-1] absolute encoder value will be displayed in P19-98. No movement of the drive possible [0-8192] Encoder Offset
19-98	Abs. enc. position	Shows the value of the absolute encoder. Value is updated after power up

7.3 Start-error or Track-error or accelerates unexpected or does not move

7.3.1 Encoder function

Check the upper two LEDs at terminal block X55 where the encoder is connected. The LEDs show the status of channel A and B of the incremental encoder. If there is a broken wire or a short circuit the LEDs will be switched off.

Illustration: Terminal X55, LED's

7.3.2 Encoder Auto tuning P19-03

The frequency inverter can detect the encoder direction. P19-03 must be set to 1 and the inspection mode must be activated. The frequency inverter starts the motor using "control without feedback" and checks the direction of the encoder speed. Enter P19-03 = 1 and start using the inspection mode control panel. The elevator will only move a few centimeters. **Caution:** Perform this function only when operating with an incremental encoder. Afterwards, P19-05 is automatically set to the measured encoder rotation direction.

No.	Name	Parameter Description
19-03	Encoder	[0] Not active
	Autotuning	[1] Active
19-05	Encoder direction	[0] normal direction
		[1] direction inverted

Encoder pulses

Use Parameter 34-50 "Actual Position" to read out the actual position value.

Depends on the motor direction, the actual position value must increase for positive motor direction and decrease for negative motor direction. If the encoder pulses, for the position information, are counted not correctly, check the encoder wiring and the mechanical coupling from motor and encoder.

7.4 Noise or vibrations during acceleration or deceleration (low frequency)

Reduce P19-41 "KP – gain at operation", until the motor makes no noise or vibrations. (Minimum 20). Motors without any load can only be run with the minimum value of 20 in P19-41.

No.	Name	Parameter Description
19-41	KP-Gain at	Proportional part of the speed controller. Decrease the
	operation	value when motor generates noise or vibration.

Danfoss

Quick Guide VLT Lift Drive LD302

Noise during operation

If the resonance frequency of the mechanical system matches to the harmonics in the output frequency of the drive, vibrations will occur. P 19-45 can damp this behavior. Usually, lower values solve the vibrations. Recommended values are 1 to 8 ms.

No.	Name	Parameter Description	
19-41	KP-Gain at	Proportional part of the speed controller. Decrease the	
	operation	value when motor generates noise or vibration.	
No.	Name	Parameter Description	
19-45	Filter time operation [ms]	Filter time of the speed controller, can be used to filter out vibrations from the system or disturbances of the encoder-signal	

7.5 Optimization

7.5.1 Start Behavior

Press [Main Menu], select group 19-** Application Parameters and press [OK].

In case of jerks at start, P 19-14 can be increased to ensure that the mechanical brake is fully opened before the reference is given out.

P19-14 can be used as well to optimize the rollback at start. The start controller settings in Parameter P19-40, P19-42, P19-44 and P19-46 are active during the delay in P19-14. See chapter 5.3.4 Speed PID controller.

In case of rollback at start make sure that the value of P19-14 is high enough that the start controller can eliminate rollback.

Increased values of P19-40 and reduced values in P19-42 help to reduce rollback. P19-46 is an additional fast zero-position controller to eliminate remaining rollback. In case of instable control during start, P19-40 shall be decreased, and P19-42 increased.

No.	Name	Parameter Description	PM-	Asynchrono
			motor recommended values	us- motor recommended values
19-13	Brake Lift	Delay time for motor magnetization.	0	300-800
	delay [ms]	(open loop). Value is determined automatically from motor data		
19-14	Brake	Time delay until brake is fully applied.	300-	300-2500
	delay	Also defines the active time of the start	2500	
	[ms]	speed controller		
19-40	KP-Gain	Proportional value of the start-speed	20-100	50-100
	at start	controller		
19-42	I-time	Integral part of the start-speed	12-50	200
	at start	controller		
	[ms]			
19-44	Filter time	Filter time of the encoder signals	1.0	10.0
	at start			
	[ms]			
19-46	Pos. gain	Value needed for Gearless motor	0.2-0.5	0.0-0.4
	start			

Controller behavior during operation

In case of overshoot at the end of acceleration or deceleration, a decreased I time P19-42 can optimize this behavior.

Parameters for Stop behavior

The smoothness during approach to the floor generally depends on the approach distance (P19-19) and the approach speed (P19-22). We recommend keeping the default values to ensure a comfortable approach.

However, shorter approach distances during positioning or higher approach speeds can result in stronger vibrations.

In the event of rollback after stop, the time behavior of the PLC and the brake closing delay P19-15 should be checked.

P19-58 determines the delay time in ms for the delayed engagement of the mechanical brake (brake closed) after reaching flush position (in position).

P19-59 determines the time of the torque ramp-down in ms until the motor turns off. The brake is closed and the torque is reduced to 0 Nm within the ramp time, after which the motor is turned off. Affects the mechanical noise of the brake when the motor is off.

No.	Name	Parameter Description
19-19	Run in distance [mm]	Deceleration distance from P19-22 run in speed to stop at floor level. With DCP4, the function determines the stopping distance in millimeters.
19-22	V0 [m/s]	Run in speed V0
19-15	Brake close delay [ms]	The brake release time in ms ensures that when the flush position is reached, the motor continues to be powered until the mechanical brake is closed. After outputting 0V to terminal 29, the frequency inverter continues to supply power to the motor until the set brake release time has elapsed. Only then will the "position reached" signal be output at terminal X59.7. The time delay ensures that the motor remains magnetized long enough until the brake is closed.
19-58	Delay after stop [ms]	Determines the delay time in milliseconds for the delayed engagement of the mechanical brake (brake closed) after reaching the flush position (in position).
19-59	Torque down time [ms]	Time for decreasing the torque when mechanical brake is closed. Determines the time of the torque ramp-down in milliseconds until the motor turns off. The brake is closed, and the torque is reduced to 0Nm within the ramp time; afterward, the motor is turned off. Affects the mechanical noise of the brake when the motor is off.

8 Troubleshooting

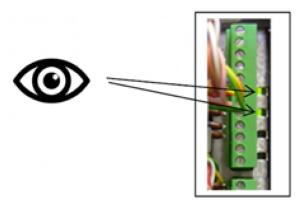
NOTE:

Reset of critical errors, message "Drive locked" with parameter P19-64 --> [-1]. may only be reset by trained specialists.

High Motor current on asynchronous motors

- 1. Check nominal motor data.
- 2. Perform the motor adaption. P 19-63 = [1] (See chapter "Automatic motor adaptation, AMA")

High motor current on PM motors


- 1. Check nominal motor data.
- 2. Perform the motor adaption. P 19-63 = [1] (See chapter "Automatic motor adaptation, AMA").
- 3. P19-03=-1 can be used in case the movement does not work. (Please check P 19-05 after the following operation. If the value of P 19-05 is -1 this parameter shall be set back to zero and two motor phases need to be changed.)
- 4. Check rotor offset (See chapter "Operation with absolute encoder")
- 5. Disable absolute encoder for test purpose (See chapter "Operation with absolute encoder")

Motor noise or drive noise at motoric operation

Check input phases voltage and balance.

Motor noise, encoder failures, unstable operation

- Check shielding of motor and encoder cables.
- Check Encoder LED's, Terminal X55.

If the LES's don't light up when the encoder turns, check:

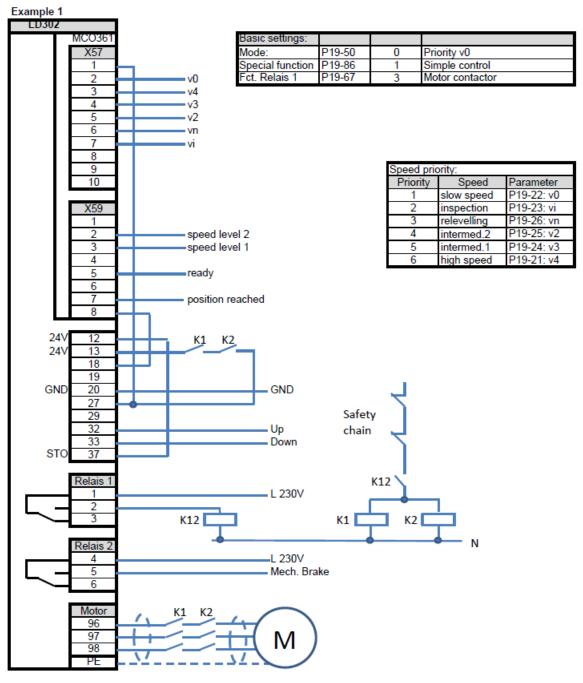
- the encoder wiring on terminal X55, pin 1 to 8.
- if par. 19-98 = 2
 - o the encoder wiring on terminal X55, pin 9 to 12.

Earth fault alarm at start

Check for mismatch between mains and motor connection.

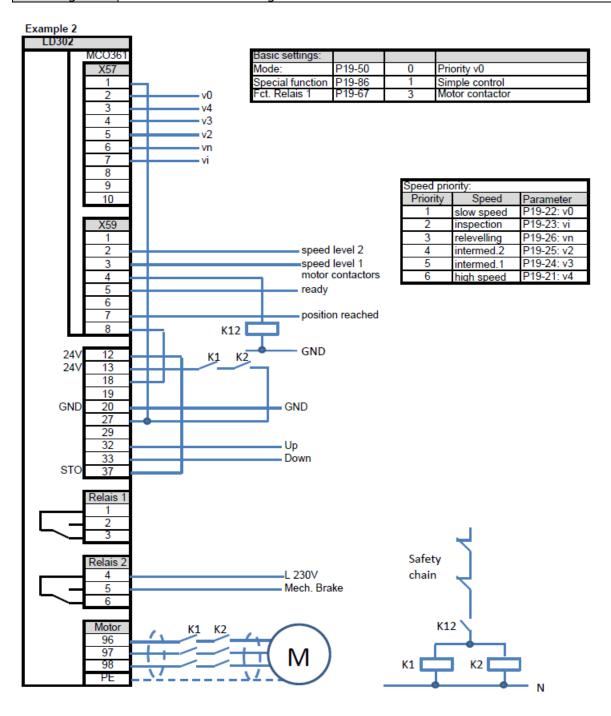
Sporadic A38 during operation

Check the EMC-compliant installation of motor and control cables. Pay special attention to extensive shield connections and sufficient grounding of components and system parts. See Chapter 10



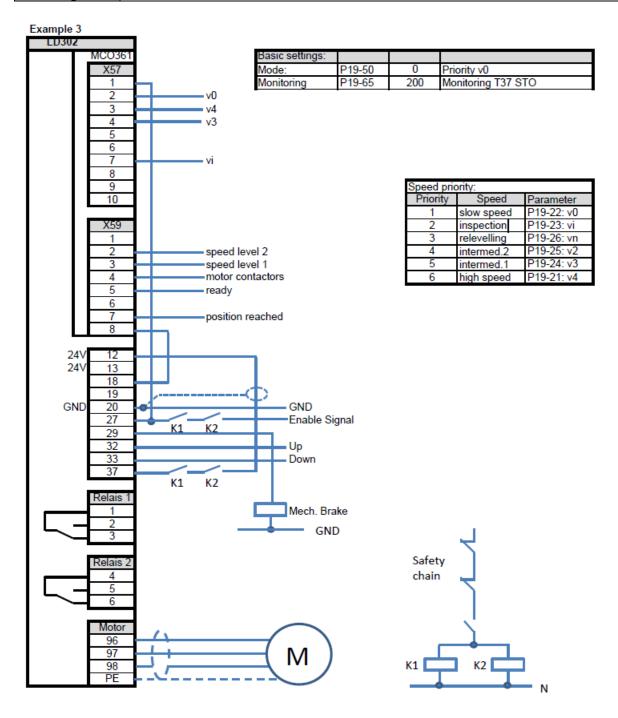
9 Appendix

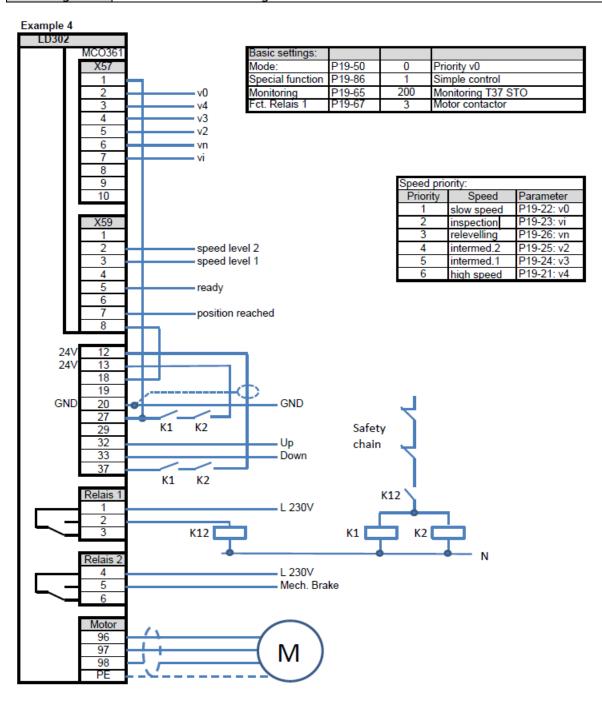
9.1 Wiring Examples with Parameter setup


Mode 0, digital, low speed priority

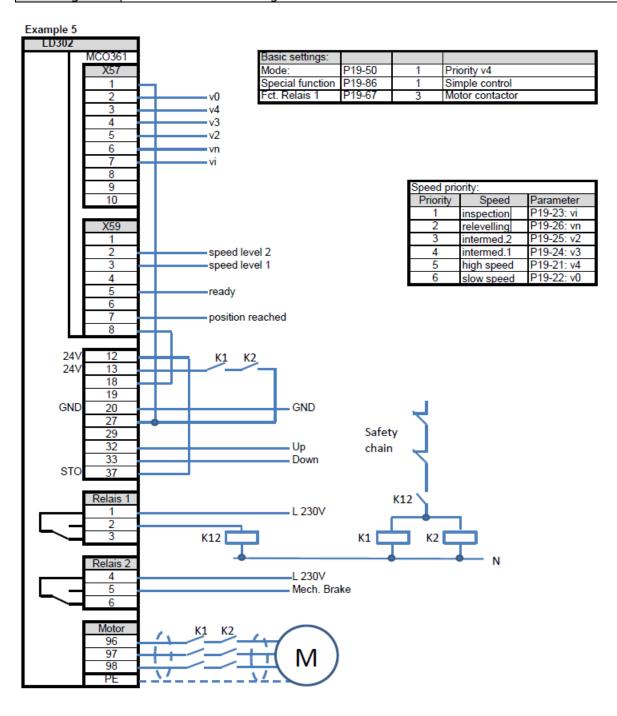
Example 1: Mode 0, Digital speed selection, low speed priority, direction priority up			
Configuration:	Configuration: Motor contactors controlled by drive		
Speeds: 6	eeds: 6 Priority: slow speed, inspection, relevelling, intermed.2, intermed.1,		
high speed			
Start Signal: Start with direction signal			

Mode 0, digital, low speed priority


Example 2: Mode 0, Digital speed selection, low speed priority, direction priority up			
Configuration:	Motor contactors controlled by drive, Output X59.4		
Speeds: 6	Priority: slow speed, inspection, relevelling, intermed.2, intermed 1, high		
	speed		
Start Signal:	Start with direction signal		


Mode 0, 24V control signals to lift controller used

Example 3: Mode 0, only 24V control signals to lift controller used		
Configuration:	Without motor contactors, only 24V control signals to lift controller used	
Speeds: 6	Priority: slow speed, inspection, relevelling, intermed.2, intermed 1,	
	high speed	
	Start with enable signal from lift controller, safety relays controlled by lift	
Start Signal:	controller	

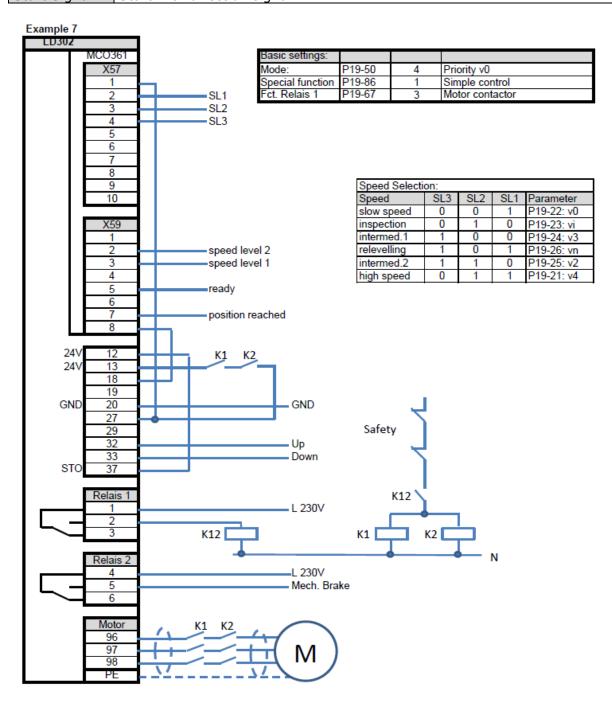

Mode 0, digital, low speed priority

Example 4: Mode 0, Digital speed selection, low speed priority, direction priority up			
Configuration:	Without motor contactors		
Speeds: 6	Priority: slow speed, inspection, relevelling, intermed.2, intermed.1,		
	high speed		
Start Signal:	Start with direction signal		

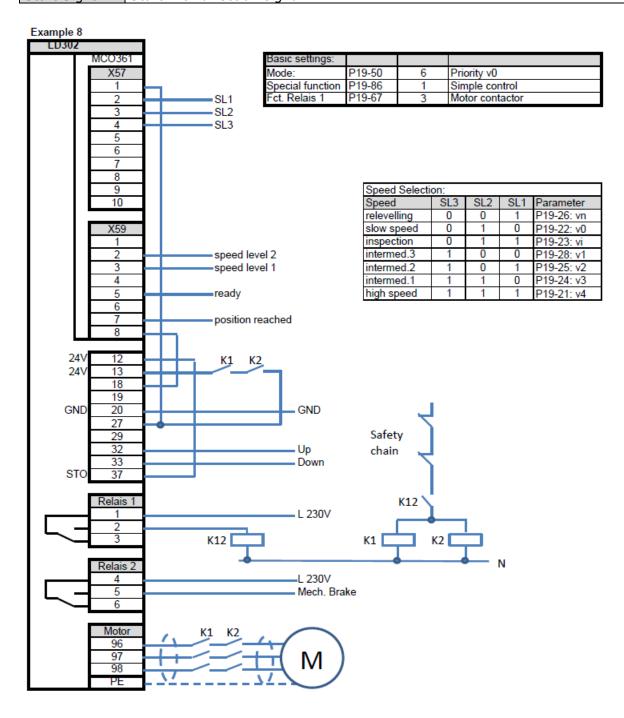
Mode 1, digital, high speed priority

Example 5: Mode 1, Digital speed selection, high speed priority, direction priority up-			
Configuration:	Motor contactors controlled by drive		
Speeds: 6	Priority: slow speed, inspection, relevelling, intermed.2, intermed.1, high		
·	speed		
Start Signal:	Start with direction signal		

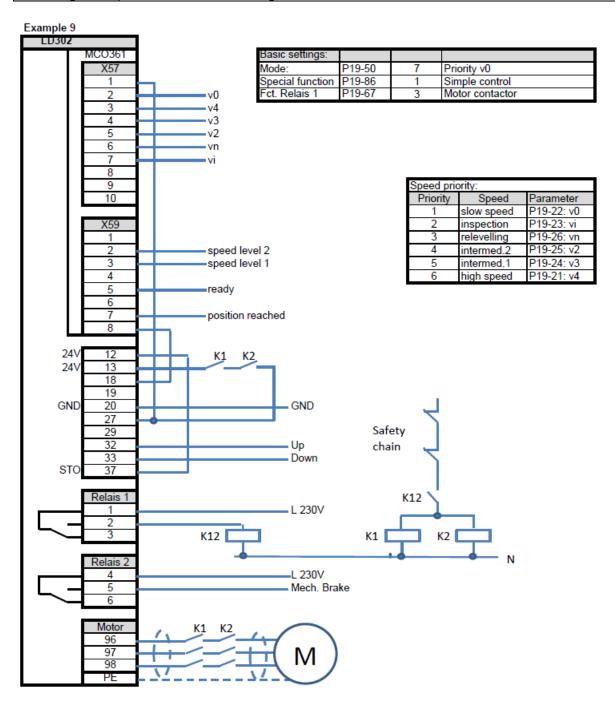
Mode 1, slow speed direction


Example 6: Mode 1, slow speed with direction signal		
Configuration: Motor contactors controlled by drive		
Speeds: 3	Priority: slow speed, inspection, high speed	
Start Signal:	Start with direction signal	

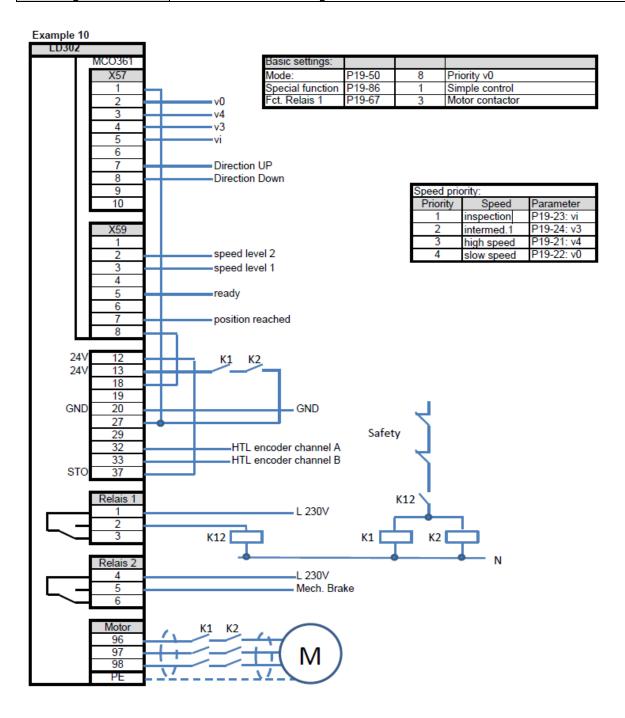
Mode 4, binary 1

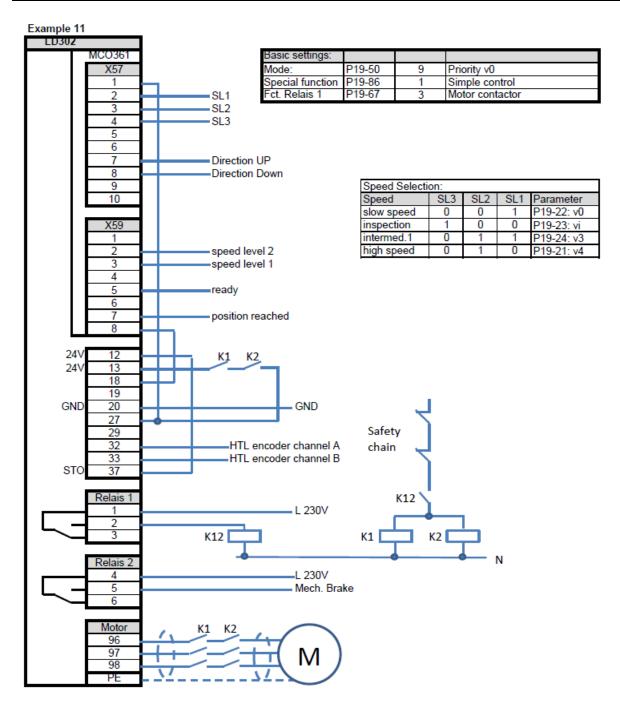

Example 7: Mode 4, Binary speed selection 1, direction priority up		
Configuration:	Motor contactors controlled by drive	
Speeds: 6	Slow speed, inspection, relevelling, intermed.3, intermed.2, intermed 1,	
	high speed	
Start Signal:	Start with direction signal	

Mode 6, binary 2


Example 8: Mode 6, Binary speed selection 2, direction priority up		
Configuration:	Motor contactors controlled by drive	
Speeds: 7	Slow speed, inspection, relevelling, intermed.3, intermed.2, intermed.1,	
	high speed	
Start Signal:	Start with direction signal	

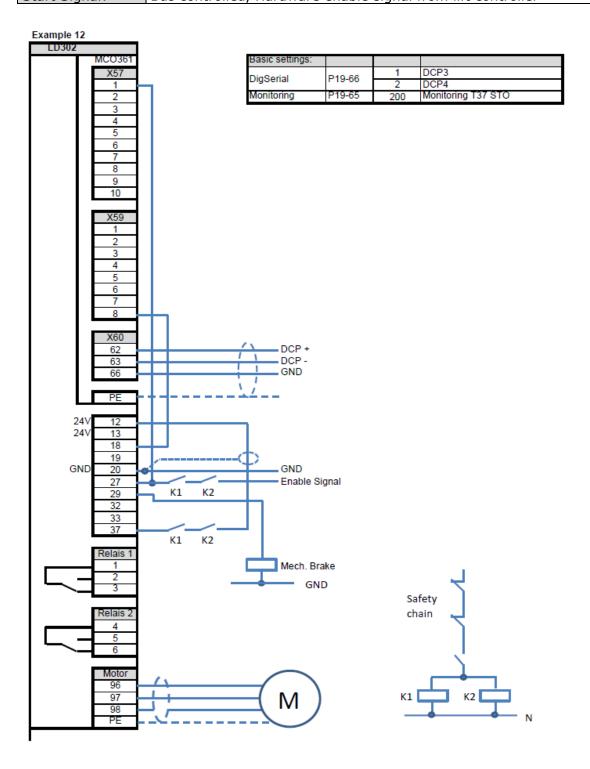
Mode 7, digital, low speed priority, direction priority down

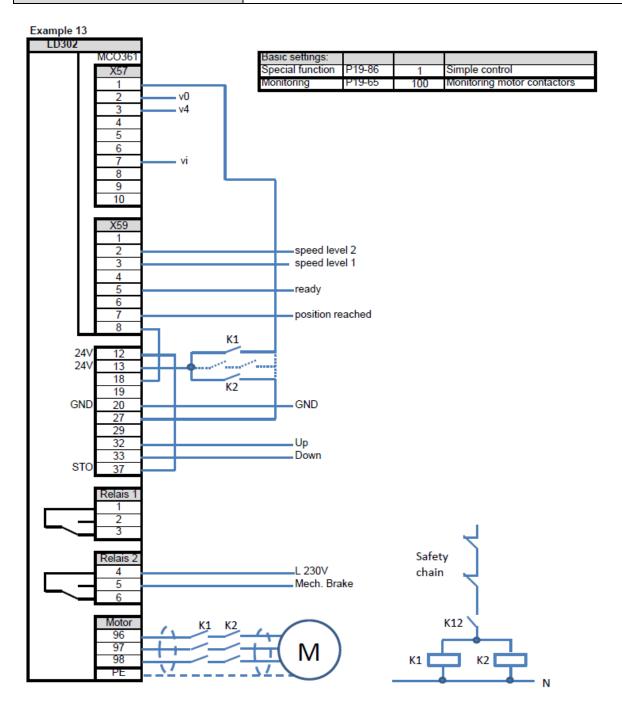

Example 9: Mode 7, Digital speed selection, low speed priority, direction priority down		
Configuration:	Motor contactors controlled by drive	
Speeds: 6	Priority: slow speed, inspection, relevelling, intermed.2, intermed.1, high	
	speed	
Start Signal:	Start with direction signal	


Mode 8, HTL-encoder, digital 1, direction priority up

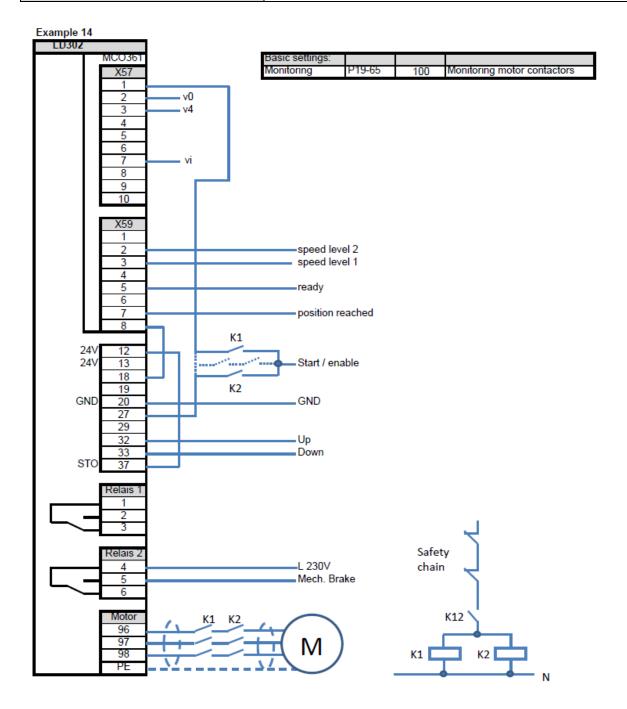
Example 10: Mode 8, HTL-encoder, digital speed selection 1, direction priority up		
Configuration: Motor contactors controlled by drive		
Speeds: 4 Slow speed, inspection, intermed 1, high speed		
Start Signal:	Start with direction signal	

Mode 9, HTL-encoder, binary

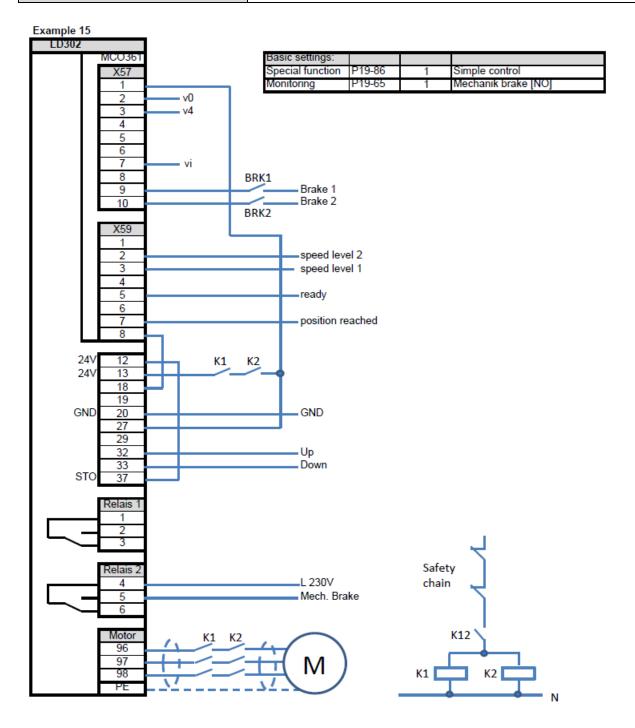

Example 11: Mode 9, HTL-encoder, Binary speed selection, direction priority up		
Configuration: Motor contactors controlled by drive		
Speeds: 4	Slow speed, inspection, intermed 1, high speed	
Start Signal:	Start with direction signal	


Bus controlled /DCP3/DCP4

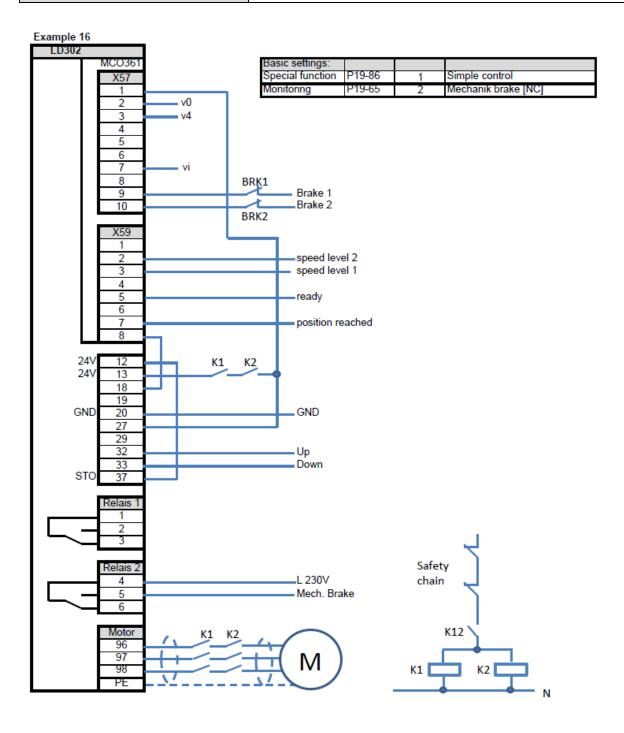
Example 12: Bus controlled /DCP3/DCP4		
Configuration:	Without motor contactors	
Start Signal:	Bus controlled. Hardware enable signal from lift controller	


Monitoring of motor contactors

Example 13: Monitoring of motor contactors		
Configuration:	Start with direction signal	


Monitoring of motor contactors

Example 14: Monitoring of motor contactors				
Configuration: Start with enable signal				


Monitoring brake feedback 1, normal open contacts

Example 15: Monitoring of brake feedback 1, normal open contacts				
Configuration: Start with direction signal				

Monitoring brake feedback 2, normal closed contacts

Example 16: Monitoring of brake feedback 2, normal closed contacts				
Configuration: Start with direction signal				

130BD354.10

9.2 Start and Stop Sequences

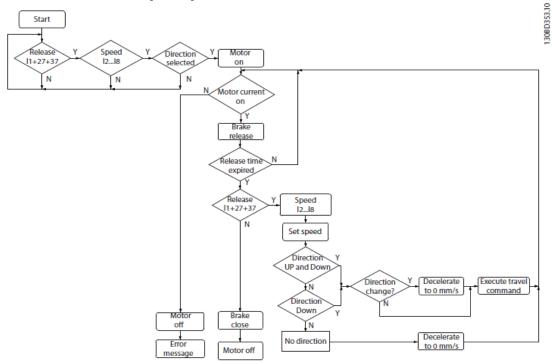


Illustration 4.1 Lift Control Start Sequence in operating mode

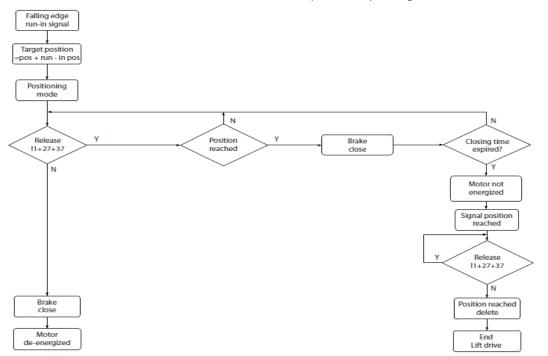


Illustration 4.2 Lift Control Stop Sequence in operating mode

9.3 Drive Motor Database

Select t a ASM or PM motor type and enter the Motor number in Parameter 19-01. The motor number is the number after the letter M of the motor type code. Example: For the motor type M**16**-VAF160M/4B-21, enter the motor number 16 in Parameter 19-01. Parameter 19-01=16.

ASM Motor- Type	ASM Motor- Type						
Parameter- No., Description and Motor- Data							
	1-20	1-22	1-23	1-24	1-25	1-30	1-31
VAF= OMS Motor	Motor Power [W]	Motor Voltage [V]	Motor Frequency [Hz]	Motor Current [A]	Motor nominal Speed [RPM]	Stator Resistance (Rs) [Ohm]	Rotor Resistance (Rr) [Ohm]
M1-VAF112M/4A-11H	420	400	60	840	1725	12610	8810
M2-VAF112L/4L-11LH	550	400	60	1100	1725	9740	7080
M4-VAF132M/4D-21LH	1100	400	60	2200	1730	3950	3310
M5-VAF160M/4B-21H	1500	400	70	2800	2065	2210	1160
M6-VAF160L/4F-21H	2000	400	70	3600	2070	1440	830
M7-VAF112L/4L-11LH	380	400	40	810	1120	20610	14980
M9-VAF132M/4D-11H	750	400	40	1530	1130	8770	7250
M10-VAF112L/4C-11SH	750	400	60	1450	1730	8190	4850
M11-VAF160L/4F-21LH	1700	400	60	3100	1765	2060	1200
M12-VAF160L/4F-21LH	1200	400	40	2200	1170	4260	2500
M13-VAF132M/4D-11LH	1500	400	87	2900	2550	1950	1640
M14-VAF132M/4D-21LH	1100	400	60	2200	1730	3950	3310
M15-VAF112L/4C-11SH	870	400	70	1700	2030	5730	3370
M16-VAF160M/4B-21	1860	400	87	3400	2580	1420	740
M18-VAF160M/4E-21H	1500	400	60	2700	1760	2490	1350
M20-VAF160L/4D-21LH	1450	400	40	2650	1170	3360	2080
M21-VAF160L/4D-21LH	2050	400	60	3700	1765	1610	960
M22-VAFU132M/4D-21LH	550	400	50	1100	1450	6090	5240
M23-VAFU132M/4D-21LH	750	400	50	1450	1440	6090	5240
M24-VAF132M/4C-21H	900	400	60	1800	1740	5110	4080
M25-VAFU132S/4B-21H	770	350	70	1660	2040	4550	3650
M27-VAF160L/4D-21LH	3000	400	87	5600	2580	700	430
M28-VAFU132M/4D-21LH	500	400	33	1000	930	13390	11340
M29-VAFU132S/4E-11SH	750	400	60	1450	1745	5480	4390
M30-VAF160C/4D-21H	1300	380	50	2570	1465	2610	149
M31-VAF180L/4D-21LH	2630	400	50	4800	1475	940	560
M32-VAF200L/4E-21LH	3600	400	60	6500	1775	610	380
M33-VAF160L/4C-21H	1700	380	50	3400	1470	1740	1000
M34-VAF160L/4F-21H	1400	380	50	2700	1465	2360	1340
M35-VAF180L/4B-21H	2050	400	50	3800	1475	1510	780

PM Motor- Type							
,,	Paramete	r- No., De	scription and	Motor- Data			
	1-24	1-25	1-26	1-30	1-37	1-39	1-40
ZA=Ziehl ABEGG Motor	Motor Current [A]	Motor nominal Speed [RPM]	Motor Cont. Rated Torque [Nm]	Stator Resistance (Rs) [Ohm]	Induktion d-Achse (Ld) [mH]	Motor Poles	Back EMF at 1000 RPM [V]
M37-Te-Stand	1600	150	4430	13800	72	24	1810
M38-GLAT	2250	180	3300	6000	43	40	1105
M39-ZA-160.20-3,3kW-240rpm	830	240	1300	33600	167	20	908
M40-ZA-160.20-5,2kW-384rpm	1220	384	1300	15800	76	20	626
M41-ZA-160.30-2,8kW-192rpm	1050	192	1950	29800	167	20	1126
M42-ZA-160.30-3,5kW-240rpm	1300	240	1950	20700	116	20	937
M43-ZA-160.30-4,4kW-300rpm	1600	300	1950	13900	78	20	796
M44-ZA-160.30-5,6kW-384rpm	1950	384	1950	9100	51	20	626
M45-ZA-160.40A-5,2kW-192rpm	1400	192	2600	22100	133	20	1162
M46-ZA-160.40A-6,5kW-240rpm	1650	240	2600	15600	93	20	973
M47-ZA-160.40A-8,2kW-300rpm	2000	300	2600	10500	64	20	807
M48-ZA-160.40A-10,5kW-384rpm	2500	384	2600	6700	40	20	640
M49-ZA-200.15C-20-2,5kW-96rpm	900	96	2500	62200	371	20	1766
M50-ZA-200.15C-20-4,4kW-168rpm	1350	168	2500	27600	164	20	1267
M51-ZA-200.15C-20-4,3kW-186rpm	1150	186	2200	27000	168	20	1060
M52-ZA-200.15C-20-5kW-192rpm	1500	192	2500	22900	133	20	1063
M53-ZA-200.15C-20-6,8kW-258rpm	1900	258	2500	13700	81	20	818
M54-ZA-200.15C-20-7,9kW-300rpm	2050	300	2500	11300	66	20	744
M55-ZA-200.20C-20-3,3kW-96rpm	1100	96	3300	46600	308	20	1874
M56-ZA-200.20C-20-4,1kW-120rpm	1280	120	3300	34600	227	20	1629
M57-ZA-200.20C-20-5,8kW-168rpm	1650	168	3300	20800	137	20	1256
M58-ZA-200.20C-20-6,6kW-192rpm	1900	192	3300	15800	105	20	1099
M59-ZA-200.20C-20-8,9kW-258rpm	2500	258	3300	9200	61	20	831
M60-ZA-200.20C-20-10,4kW-300rpm	2850	300	3300	7100	47	20	732
M61-ZA-200.30C-20-4,8kW-96rpm	1450	96	4750	30900	234	20	2054
M62-ZA-200.30C-20-6kW-120rpm	1700	120	4750	22500	17	20	1730
M63-ZA-200.30C-20-6,7kW-168rpm	1700	168	3800	15800	122	20	1318
M64-ZA-200.30C-20-8,4kW-168rpm	2200	168	4750	13500	101	20	1328
M65-ZA-200.30C-20-9,6kW-192rpm	2450	192	4750	10500	79	20	1180
M66-ZA-200.30C-20-12,8kW-258rpm	3100	258	4750	6700	51	20	945
M67-ZA-200.30C-20-14,1kW-300rpm	3500	300	4500	4610	35	20	784
M68-ZA-200.40C-20-6kW-96rpm	1750	96	6000	22100	184	20	2108
M69-ZA-200.40C-20-7,5kW-120pm	2100	120	6000	16300	134	20	1788
M70-ZA-200.40C-20-10,6kW-168rpm	2700	168	6000	9400	79	20	1359
M71-ZA-200.40C-20-12,1kW-192rpm	3200	192	6000	6700	56	20	1153
M72-ZA-200.40C-20-16,2kW-258rpm	3900	258	6000	4480	38	20	945
M73-ZA-200.40C-20-18,8kW-300rpm	4400	300	6000	3520	30	20	830

M74-ZA-225.30-20-3,2kW-60rpm	1100	60	5000	28600	289	20	2855
M75-ZA-225.30-20-5kW-96rpm	1550	96	5000	14300	147	20	1964
M76-ZA-225.30-20-6,3kW-120rpm	1750	120	5000	12000	119	20	1716
M77-ZA-225.30-20-8,2kW-156rpm	2300	156	5000	6600	66	20	1320
M78-ZA-225.30-20-10kW-192rpm	2500	192	5000	5400	55	20	1216
M79-ZA-225.40-20-4,5kW-60rpm	1600	60	7100	28600	289	20	2855
M80-ZA-225.40-20-7kW-96rpm	2250	96	7100	14300	147	20	1964
M81-ZA-225.40-20-8kW-108rpm	2250	108	7100	14300	149	20	1954
M82-ZA-225.40-20-9kW-120rpm	2500	120	7100	12000	90	20	1644
M83-ZA-225.40-20-11,3kW-156rpm	3350	156	7100	6600	66	20	1320
M84-ZA-225.40-20-12,5kW-168rpm	3350	168	7100	6600	66	20	1318
M85-ZA-225.40-20-13kW-192rpm	3300	192	6500	5390	55	20	1216
M86-ZA-225.60B-20-7kW-60rpm	2300	60	11200	19200	220	20	2999
M87-ZA-225.60B-20-11kW-96rpm	3500	96	11200	8600	98	20	1982
M88-ZA-225.60B-20-12,5kW-108rpm	3500	108	11200	8600	98	20	1986
M89-ZA-225.60B-20-14kW-120rpm	4200	120	11200	5630	67	20	1629
M90-ZA-225.60B-20-18kW-156rpm	5350	156	11200	3700	43	20	1309
M91-ZA-225.60B-20-20kW-168rpm	5350	168	11200	3700	43	20	1308
M92-ZA-225.60B-20-20kW-192rpm	5350	192	10000	2900	33	20	1144
M93-ZA-225.60B-20-25kW-240rpm	6500	240	10000	2140	24	20	973
M94-ZA-225.60B-20-31,5kW-336rpm	7000	336	9000	1470	17	20	819
M95-ZA-250.60B-20-10kW-60rpm	3000	60	16000	13600	209	20	3258
M96-ZA-250.60B-20-16kW-96rpm	4300	96	16000	6450	99	20	2235
M97-ZA-250.60B-20-20kW-120rpm	5250	120	16000	4310	66	20	1831
M98-ZA-250.60B-20-26kW-156rpm	6800	156	16000	2630	40	20	1419
M99-ZA-250.60B-20-32kW-192rpm	8000	192	16000	1930	29	20	1216
M100-ZA-250.60B-20-38kW-240rpm	9200	240	15000	1320	20	20	1009
M101-ZA-250.60B-20-37kW-252rpm	8500	252	14000	1320	20	20	1009
M102-ZA-250.60B-20-42kW-336rpm	9400	336	12000	860	13	20	819
M103-ZA-250.80C-20-19kW-84rpm	5800	84	21000	5330	84	20	2286
M104-ZA-250.80C-20-25kW-114rpm	7000	114	21000	3250	51	20	1776
M105-ZA-250.80C-20-30kW-138rpm	8000	138	21000	2390	37	20	1529
M106-ZA-250.80C-20-27kW-156rpm	6400	156	16500	2390	37	20	1519
M107-ZA-250.80C-20-33kW-192rpm	8100	192	16500	1640	24	20	1270
M108-ZA-250.80C-20-42kW-240rpm	10200	240	16500	1060	17	20	1009
M109-ZA-250.80C-20-54kW-312rpm	13700	312	16500	600	9	20	771
M110-ZA-250.100C-20-22kW-78rpm	6200	78	26500	5030	83	20	2551
M111-ZA-250.100C-20-30kW-108rpm	8200	108	26500	2850	47	20	1906
M112-ZA-250.100C-20-37kW-132rpm	9800	132	26500	1960	32	20	1586
M113-ZA-250.100C-20-33kW-150rpm	7700	150	21000	1960	33	20	1592
M114-ZA-250.100C-20-42kW-192rpm	9800	192	21000	1270	21	20	1270
M115-ZA-250.100C-20-58kW-264rpm	13900	264	21000	710	12	20	963
M116-ZA-250.100C-20-69kW-312rpm	16700	312	21000	500	8	20	793

9.4 Messages

Lift application message	Description
Act. Inspection mode!	Activate inspection mode for operation
AMA active	AMA, Automatic Motor Adaption active
Auto on!!	VLT not in automatic mode
Counter expired!!!	Direction change counter expired
Counter low	Direction change counter low / Call Service
Operating Mode	Lift Drive ready for operation
Set Parameter	internal parameter calculation and adjustment
MCO Track Error	monitor Tracking error
MCO Encoder Error	Encoder- fault, - short circuit, - wire breakage
No motor data!!	motor data not assigned
Overspeed	Shutdown due overspeed
Overtemp Heatsink	Overtemperature on heatsink
Overtemp Motor	Overtemperature on motor
Abs. encoder-test	Drive is in absolute encoder test-mode
Encoder Error SSI	SSI-encoder fault
Encoder Error ENDAT	EnDat encoder fault
Please wait	Wait until drive is ready

9.5 Warnings and Alarms

Warnings and Alarms in P 19-81

Warnin	Varnings and Alarms						
P19-81							
No.	Warnings/Alarms of control card	Error type	Description				
4	Mains phase loss	TRIP	A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed at 14-12 Function at Mains Imbalance. Troubleshooting Check the supply voltage and supply currents to the frequency converter.				
7	DC overvoltage	TRIP	If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time. Troubleshooting Connect a brake resistor Extend the ramp time Change the ramp type Activate the functions in 2-10 Brake Function Increase 14-26 Trip Delay at Inverter Fault If the alarm/warning occurs during a power sag, use kinetic back-up (14-10 Mains Failure)				
8	DC under voltage	TRIP	If the intermediate circuit voltage (DC link) drops below the under-voltage limit, the frequency converter checks if a 24 V DC back-up supply is connected. If no 24 V DC backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit				

	Qui	- Guide VET I	LITT Drive LD302
			size. Troubleshooting Check that the supply voltage matches the frequency converter voltage. Perform input voltage test. Perform soft charge circuit test.
9	Inverter overload	TRIP	The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection issues a warning at 98% and trips at 100%, while giving an alarm. The frequency converter cannot be reset until the counter is below 90%. The fault is that the frequency converter has run with more than 100% overload for too long. Troubleshooting Compare the output current shown on the LCP with the frequency converter rated current. Compare the output current shown on the LCP with measured motor current. Display the Thermal Drive Load on the LCP and monitor the value. When running above the frequency converter continuous current rating, the counter increases. When running below the frequency converter continuous current rating, the counter decreases.
12	Torque limit	TRIP	The torque has exceeded the value in 4-16 Torque Limit Motor Mode or the value in 4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit can change this warning from a warning-only condition to a warning followed by an alarm. Troubleshooting If the motor torque limit is exceeded during ramp up, extend the ramp up time. If the generator torque limit is exceeded during ramp down, extend the ramp down time. If torque limit occurs while running, possibly increase the torque limit. Make sure that the system can operate safely at a higher torque. Check the application for excessive current draw on the motor.
13	Overcurrent	TRIP	The inverter peak current limit (approximately 200% of the rated current) is exceeded. The warning lasts about 1.5 s, then the frequency converter trips and issues an alarm. Shock loading or quick acceleration with high inertia loads can cause this fault. It can also appear after kinetic backup, if the acceleration during ramp up is quick. If extended mechanical brake control is selected, trip can be reset externally. Troubleshooting Remove power and check if the motor shaft can be turned. Check that the motor size matches the

		1	Lift Drive LD302
			frequency converter. Check parameters 1-20 to 1-25 for correct motor data.
14	Earth fault	TRIP	There is current from the output phases to earth, either in the cable between the frequency converter and the motor or in the motor itself. Troubleshooting Remove power to the frequency converter and repair the earth fault. Check for earth faults in the motor by measuring the resistance to earth of the
			motor leads and the motor with a megohmmeter. Perform current sensor test.
16	Short circuit	TRIP	There is short-circuiting in the motor or motor wiring. Remove power to the frequency converter and repair the short circuit.
17	Control word timeout	TRIP	There is no communication to the frequency converter. The warning is only active when parameter 8-04 Control Word Timeout Function is NOT set to [0] Off. If parameter 8-04 Control Word Timeout Function is set to [5] Stop and Trip, a warning appears and the frequency converter ramps down until it stops, and then it displays an alarm.
			Troubleshooting
25	Brake resistor short circuit	TRIP	The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational, but without the brake function. Troubleshooting • Remove the power to the frequency converter and replace the brake resistor (see parameter 2-15 Brake Check).
26	Brake resistor power limit	TRIP	The power transmitted to the brake resistor is calculated as a mean value over the last 120 s of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max. Current. The warning is active when the dissipated braking is higher than 90% of the brake resistance power. If [2] Trip is selected in 2-13 Brake Power Monitoring, the frequency converter trips when the dissipated braking power reaches 100%.

	Qu	ick Guide VLI	LITT Drive LD302
			WARNING If the brake transistor is short-circuited there is a risk of substantial power being transmitted to the brake resistor.
27	Brake chopper fault	TRIP	The brake transistor is monitored during operation and if a short circuit occurs, the brake function is disabled and a warning is issued. The frequency converter is still operational but, since the brake transistor has short circuited, substantial power is transmitted to the brake resistor, even if it is inactive. Remove power to the frequency converter and remove the brake resistor. This alarm/warning could also occur, if the brake resistor overheats. Terminals 104 and 106 are available as brake resistors Klixon inputs, see section Brake Resistor Temperature Switch in the Design Guide.
30	Motor phase U missing	TRIP	Motor phase U between the frequency converter and the motor is missing. Remove power from the frequency converter and check motor phase U.
31	Motor phase V missing	TRIP	Motor phase V between the frequency converter and the motor is missing. Remove power from the frequency converter and check motor phase V.
32	Motor phase W missing	TRIP	Motor phase W between the frequency converter and the motor is missing. Remove power from the frequency converter and check motor phase W.
33	Inrush fault	TRIP	Too many power-ups have occurred within a short time period. Let the unit cool to operating temperature. WARNING/ALARM 36, Mains failure This warning/alarm is only active if the supply voltage to the frequency converter is lost and 14-10 Mains Failure is NOT set to [0] No Function. Check the fuses to the frequency converter and mains supply to the unit.
47	24V supply low	TRIP	The 24 V DC is measured on the control card. The external 24 V DC back-up power supply may be overloaded, otherwise contact the Danfoss supplier.
48	1,8V supply low	TRIP	The 1.8 V DC supply used on the control card is outside of allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for an overvoltage condition.
63	Mechanic brake low	TRIP	The actual motor current has not exceeded the release brake current within the start delay time window.
67	Option module has changed	TRIP	One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit. ALARM 68, Safe Stop activated Safe Torque Off has been activated. To resume normal

•	Quit	ck Guide VLI L	LIIT DIIVE LD302
			operation, apply 24 V DC to terminal 37, then
			send a reset signal (via Bus, Digital I/O, or by
		_	pressing [Reset].
	Alarms of motion control card	Error type	Description
108	Track error	TRIP	tracking limit P19-48 exceeded
150	No external 24 Volt		External 24 V supply is missing, There is no external 24V mains for digital Input available (or the Voltage is to low?). Activate external mains in Parameter 33-85.
154	Digital Output overloaded		digital output on X59 overloaded
188	CAN-BUS Fault	TRIP	CAN communication timeout
192	Encoder error	TRIP	Short cut or wire break of encoder signals on X55
	Alarms of lift	Error type	Description
	application		
207	Over speed	TRIP	Overspeed
208	Start error	TRIP	tracking distance limit P19-47 at start exceeded
216	Brake failure	TRIP	Drive signal for releasing the brake is missing or motor current too low
217	Brake failure 1	TRIP LOCK	Brake feedback signal not applied before releasing the brake
218	Brake failure 2	TRIP LOCK	Brake feedback signal not released before closing the brake
219	Brake failure 3	TRIP LOCK	Brake feedback signal not applied after closing the brake
220	Brake IGBT	TRIP	Brake IGBT defect or short circuit at the brake resistor
221	Serial bus fault	MESSAGE	Bus fault
225	DCP4 position deviation	TRIP	Position deviation between distance at motor feedback and cabin (absolute encoder) exceeded. Check parametrization of Lift drive / Lift controller
228	No Motor Data	MESSAGE	No motor data available. Message is generated after setting the factory settings and disappears after entering valid motor data.
229	DCP4-Timeout	Error/ Alarm	DCP-4 journey monitoring. Position deviations of the motor encoder that are not reflected in the change in shaft encoder position
226	Fan Fault	TRIP	Fault of drive internal fan.
230	Directions signal mismatch	TRIP	Direction signals for positive and negative direction at start
236	Overtemperature motor	TRIP	Overtemperature of motor
237	Overtemperature drive	TRIP	Overtemperature of drive
238	V=0 Stop	MESSAGE	Quick- Stop
239	Timeout STO T37	TRIP	Signal on T37 is missing >10 seconds after start signal
240	Timeout Quick- Start	TRIP	Speed signal is missing >5 seconds after quick start
241	Positioning not completed	MESSAGE	Time for positioning to floor level of 2 seconds exceeded
242	Direction change	MESSAGE	Warning limit of direction change counter

Quick Guide VET Elit Drive LD302							
	counter low		exceeded				
243	Direction change counter expired	TRIP	Direction change counter exceeded, speed reduced to v0 and vi				
246	Encoder error SSI	TRIP	Encoder error SSI-absolute encoder				
247	Encoder error EnDat	TRIP	Encoder error EnDat absolute encoder				
248	Missing Speed/Dir	MESSAGE	Speed or direction signal missing longer than 2 seconds during movement				
249	Governor failure	TRIP LOCK	Monitoring of feedback contact of speed governor				
250	Encoder error BISS	TRIP	Encoder error BISS absolute encoder				
251	CO1 T27 off	TRIP	Contactor monitoring signal timeout at start. Signal on T27 is missing >10 seconds after start signal				
252	CO2 X57.1 off/ Contactor monitoring signal timeout at start	TRIP	Signal on X57.1 is missing >10 seconds after start signal				
253	CO1 T27 on/ Contactor monitoring signal not switched to LOW state after travel	TRIP LOCK	Signal on T27 not changed to LOW before start				
254	CO2 X57.1 on/ Contactor monitoring signal not switched to LOW state after travel	TRIP LOCK	Signal on X57.1 not changed to LOW before start				
255	CO1T27 Stop	MESSAGE	Movement interrupted with T27				
256	CO2X57.1	MESSAGE	Stop Movement interrupted with X57.1				
257	STOT37 Stop	MESSAGE	Movement interrupted with T37				
258	Bus Stop	MESSAGE	Movement interrupted with Bus-signal				
259	T37 on	TRIP LOCK	STO Signal on T37 not changed to LOW before start				
305	VLT-Alarm of control card. See alarm log of control card	TRIP	VLT-Alarm of control card. See alarm log of control card				

Further Warnings and Alarms

WARNING 1, 10 Volts low

The control card voltage is below 10 V from terminal 50. Remove some of the load from terminal 50, as the 10 V supply is overloaded. Max. 15 mA or minimum 590 Ω . A short circuit in a connected potentiometer or improper wiring of the potentiometer can cause this condition.

Troubleshooting

Remove the wiring from terminal 50. If the warning clears, the problem is with the wiring. If the warning does not clear, replace the control card.

WARNING/ALARM 2, Live zero error

This warning or alarm only appears if programmed in 6-01 Live Zero Timeout Function. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. Broken wiring or faulty device sending the signal can cause this condition.

Troubleshooting

Check connections on all the analog input terminals. Control card terminals 53 and 54 for signals, terminal 55 common. MCB 101 terminals 11 and 12 for signals, terminal 10 common. MCB 109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common). Check that the frequency converter programming and switch settings match the analog signal type. Perform Input Terminal Signal Test.

WARNING/ALARM 3, No motor

No motor has been connected to the output of the frequency converter.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high-voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter issues a warning or an alarm when the counter reaches 100% in 1-90 Motor Thermal Protection. The fault occurs when the motor runs with more than 100% overload for too long.

Troubleshooting

Check for motor overheating. Check if the motor is mechanically overloaded. Check that the motor current set in *1-24 Motor Current* is correct. Ensure that Motor data in parameters 1-20 to 1-25 are set correctly. If an external fan is in use, check in *1-91 Motor*, External Fan that it is selected. Running AMA in 1-29 Automatic Motor Adaptation (AMA) tunes the frequency converter to the motor more accurately and reduces thermal loading.

WARNING/ALARM 11, Motor thermistor over temp

The thermistor might be disconnected. Select whether the frequency converter issues a warning or an alarm in 1-90 Motor Thermal Protection.

Troubleshooting

Check for motor overheating. Check if the motor is mechanically overloaded. Check that the thermistor is connected correctly between either terminal 53 or 54 (analog voltage input) and terminal 50 (\pm 10 V supply). Also check that the terminal switch for 53 or 54 is

set for voltage. Check that *1-93 Thermistor Source* selects terminal 53 or 54. When using digital inputs 18 or 19, check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50. If a KTY Sensor is used, check for correct connection between terminals 54 and 55. If using a thermal switch or thermistor, check that the programming if *1-93 Thermistor Resource* matches sensor wiring. If using a KTY Sensor, check the programming of 1-95 KTY Sensor Type, 1-96 KTY Thermistor Resource and 1-97 KTY Threshold level match sensor wiring.

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software. Record the value of the following parameters and contact your Danfoss supplier:

15-40 FC Type

15-41 Power Section

15-42 Voltage

15-43 Software Version

15-45 Actual Typecode String

15-49 SW ID Control Card

15-50 SW ID Power Card

15-60 Option Mounted

15-61 Option SW Version (for each option slot)

WARNING/ALARM 22, Hoist mechanical brake

Report value shows what kind it is.

0 = The torque ref. was not reached before time-out.

1 = There was no brake feedback before time-out.

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

Check fan resistance. Check soft charge fuses.

WARNING 24, External fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

Check fan resistance. Check soft charge fuses. WARNING 25, Brake resistor short circuit The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational but without the brake function. Remove power to the frequency converter and replace the brake resistor (see *2-15 Brake Check*).

WARNING/ALARM 28, Brake check failed

The brake resistor is not connected or not working.

Check 2-15 Brake Check. ALARM 29, Heatsink temp. The maximum temperature of the heatsink has been exceeded. The temperature fault resets when the temperature falls below a defined heatsink temperature. The trip and reset points are different based on the frequency converter power size.

Troubleshooting

Check for the following conditions.

Ambient temperature too high.

- Motor cable too long.
- Incorrect airflow clearance above and below the frequency converter.
- Blocked airflow around the frequency converter.
- Damaged heatsink fan.
- Dirty heatsink.

For the D, E, and F enclosures, this alarm is based on the temperature measured by the heat sink sensor mounted inside the IGBT modules. For the F enclosures, the thermal sensor in the rectifier module can also cause this alarm.

Troubleshooting

- Check fan resistance.
- Check soft charge fuses.
- IGBT thermal sensor.

ALARM 38, Internal fault

When an internal fault occurs, a code number is displayed.

Troubleshooting

- Cycle power
- Check that the option is properly installed
- Check for loose or missing wiring

It may be necessary to contact your Danfoss supplier or service department. Note the code number for further troubleshooting directions.

ALARM 39, Heatsink sensor

No feedback from the heatsink temperature sensor. The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

WARNING 40, Overload of digital output terminal 27

Check the load connected to terminal 27 or remove short circuit connection. Check 5-00 Digital I/O Mode and 5-01 Terminal 27 Mode.

WARNING 41, Overload of digital output terminal 29

Check the load connected to terminal 29 or remove short circuit connection. Check 5-00 Digital I/O Mode and 5-02 Terminal 29 Mode.

WARNING 49, Speed limit

When the speed is not within the specified range in 4-11 Motor Speed Low Limit [RPM] and 4-13 Motor Speed High Limit [RPM], the frequency converter shows a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping), the frequency converter trips.

ALARM 50, AMA calibration failed

Contact your Danfoss supplier or Danfoss Service Department.

ALARM 51, AMA check Unom and Inom

The settings for motor voltage, motor current and motor power are wrong. Check the settings in parameters 1-20 to 1-25.

ALARM 52, AMA low Inom

The motor current is too low. Check the settings. ALARM 53, AMA motor too big The motor is too big for the AMA to operate.

ALARM 54, AMA motor too small

The motor is too small for the AMA to operate. ALARM 55, AMA parameter out of range The parameter values of the motor are outside of the acceptable range. AMA cannot run.

ALARM 56, AMA interrupted by user

The user has interrupted the AMA.

ALARM 57, AMA internal fault

Try to restart AMA again a number of times, until the AMA is carried out.

NOTE:

Repeated runs may heat the motor to a level where the resistance Rs and Rr are increased. In most cases, however, this is not critical. ALARM 58, AMA Internal fault Contact your Danfoss supplier.

WARNING 59, Current limit

The current is higher than the value in *4-18 Current Limit*. Ensure that Motor data in parameters 1-20 to 1-25 are set correctly. Possibly increase the current limit. Be sure that the system can operate safely at a higher limit.

WARNING 62, Output frequency at maximum limit

The output frequency is higher than the value set in *4-19 Max Output Frequency*. ALARM 64, Voltage Limit The load and speed combination demands a motor voltage higher than the actual DC link voltage.

WARNING/ALARM 65, Control card over temperature

The cut-out temperature of the control card is 80 °C. Troubleshooting

- Check that the ambient operating temperature is within limits
- Check for clogged filters
- Check fan operation
- Check the control card

WARNING 66, Heatsink temperature low

The frequency converter is too cold to operate. This warning is based on the temperature sensor in the IGBT module. Increase the ambient temperature of the unit. Also, a trickle amount of current can be supplied to the frequency converter whenever the motor is stopped by setting 2-00 DC Hold/Preheat Current at 5% and 1-80 Function at Stop

Troubleshooting

The heatsink temperature measured as 0° C could indicate that the temperature sensor is defective, causing the fan speed to increase to the maximum. If the sensor wire between the IGBT and the gate drive card is disconnected, this warning would result. Also, check the IGBT thermal sensor.

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold. Troubleshooting

Check the operation of the door fans. Check that the filters for the door fans are not blocked. Check that the gland plate is properly installed on IP21/IP 54 (NEMA 1/12) frequency converters.

ALARM 70, Illegal FC configuration

The control card and power card are incompatible. To check compatibility, contact your supplier with the type code of the unit from the nameplate and the part numbers of the cards.

WARNING 76, Power unit setup

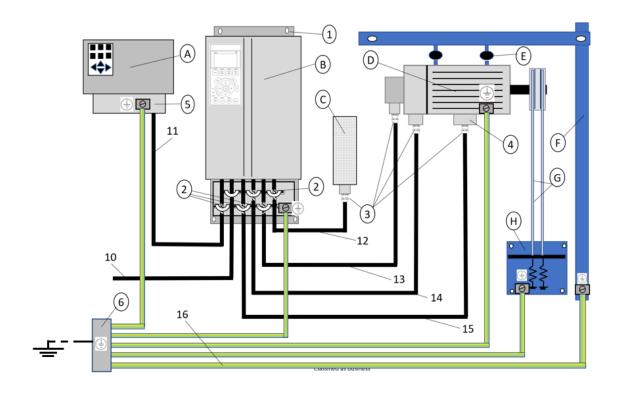
The required number of power units does not match the detected number of active power units.

WARNING 77, Reduced power mode

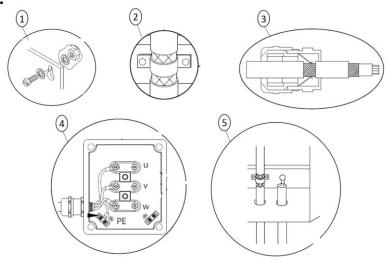
This warning indicates that the frequency converter is operating in reduced power mode (i.e. less than the allowed number of inverter sections). This warning is generated on power cycle when the frequency converter is set to run with fewer inverters and remains on.

ALARM 79, Illegal power section configuration

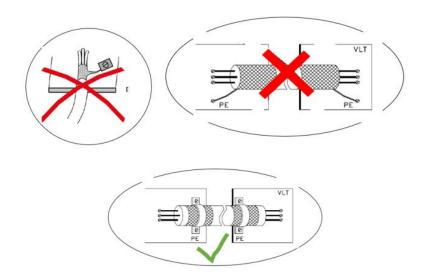
The scaling card is the incorrect part number or not installed. Also, MK102 connector on the power card could not be installed.


ALARM 80, Drive initialized to default value

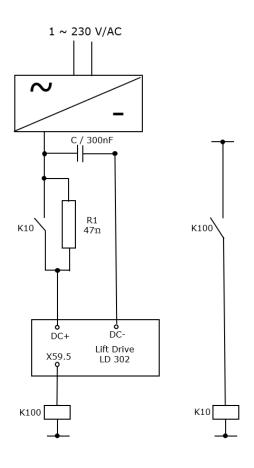
Parameter settings are initialized to default settings after a manual reset. To clear the alarm, reset the unit.


10 EMC complaint installation

Schematic drawing


Α	Lift controller	В	Lift Drive LD302	С	Brake resistor
D	Lift Motor	Е	Vibration damper	F	mech. elevator construction
G	Elevator rope	Τ	Rope- tensioning device	1	Mounting
2	Cable clamps	თ	EMC cable gland	4	Motor- terminal box
5	Lift controller terminal box	6	Potential compensation rail	10	Main power cable
11	Control cables Lift controller	12	Brake resistor cable	13	Encoder cable
14	Mech. Brake cable	15	Motor cable	16	Earth and ground cable min. 16 mm ²

Detailed view:


Note:

11 Evacuation

Schematic diagram evacuation

